
aTLAS: a Testbed to Examine Trust for a
Redecentralized Web

Valentin Siegert
Distributed and Self-organizing Systems

Technische Universität Chemnitz
Chemnitz, Germany
0000-0001-5763-8265

Mahda Noura
Distributed and Self-organizing Systems

Technische Universität Chemnitz
Chemnitz, Germany
0000-0002-5105-2463

Martin Gaedke
Distributed and Self-organizing Systems

Technische Universität Chemnitz
Chemnitz, Germany
0000-0002-6729-2912

Abstract—The redecentralization of the web introduces new
challenges on trusting data from other sources due to many
unknown or even hidden parties. An application working trust-
worthy in a decentralized web must evaluate trust and take trust-
aware decisions autonomously without relying on a centralized
infrastructure. This autonomy and the huge amount of available
applications necessitates the web to be modelled as an open
dynamic Multi-Agent System (MAS). To evaluate the trust of web
agents, the most suitable trust models need to be identified and
used. Despite the various trust models proposed in the literature
for evaluating a web agent’s trust, the examination of them with
different scenarios and configurations is not trivial. To address
these challenges, we showcase aTLAS, a Trust Laboratory
of Multi-Agent Systems which is a web-based wizard testbed
for researchers and web engineers to evaluate trust models
systematically. aTLAS will enable future research regarding trust
evaluations in a decentralized web. We show the different features
provided by aTLAS through a set of experiments.

Index Terms—Web Redecentralization, Trust, Multi-Agent
Systems, Testbed

I. INTRODUCTION

Current initiatives such as EU’s Next Generation Internet1, and
Tim Berners-Lee Social Linked Data (SoLiD) [1] project have
introduced the idea of re-decentralizing the web. Decentraliz-
ing the web enables increased data privacy so that every user
has more control where his data is stored and who has access.
One of the imminent challenges in web-redecentralization is
enabling the means to make decentralized application trust-
worthy [2]. The entities in such an architecture need to decide
which others to trust and which one not. A popular technique
to deal with this challenge is trust management [3].

In the current centralized web, applications and consumers
rely on centralized authorities to establish trust relationships
and make trust-aware decisions. The centralized authority
classifies third-party applications as trustworthy as long as
predetermined artifacts are successfully validated or a human-
given permisson is valid for this entity. However, traditional
centralized mechanisms do not suffice given the characteristics
of the decentralized web. Due to a change on data acquisition
and processing, the data will no longer come from a limited
set of sources but instead from arbitrary number of data

1https://ec.europa.eu/digital-single-market/en/policies/
next-generation-internet

providers as in SoLiD [1]. Further, a lot of these data will
origin from an unknown or even hidden source. It is clear that,
not all potential data providers can be known from the very
beginning, as anyone can provide high valuable information
and no structural authority establishes knowledge exchange
for trust factors to evaluate trust for a certain information or
within the context of the web a message. These distributed
data providers and sources improve privacy and freedom of
data [1], but also increase doubts regarding the data’s possible
malevolence and harmfulness.

A redecentralized web on the other hand requires each
application to make trust-aware decisions and their respective
trust evaluations [4] on its own. Such individual decisions
and evaluations enables the web applications to handle trust
autonomously. Moreover, a web application requires to es-
tablish dynamic trust relationships without any external au-
thority mediating them. Due to the freedom of entities in
a decentralized web and the high diversity of information
in terms of e.g., topic, truth, harmfulness and malevolence,
a trust decision requires to not only take the data source
into account but also the current content and context [5].
A change of foreign data sources impacting any trust input
dimension will always influence the trust even if a healthy trust
relationship was already established regarding other content
and/or in another context. Considering the large amount of
data and the high traffic load in the web, such an autonomous
dynamic trust handling can be a way to establish trustworthy
web applications in a redecentralized web.

Due to the autonomousity, structural independence and the
large number of web applications, the redecentralized web can
be modeled as a Multi-Agent System (MAS) on a conceptual
level as envisaged by the proposition of hypermedia MAS [6].
In MAS, a web agent (web application) can flexibily take
autonomous trust decisions with the cooperation of others.

Further, the web could be specified as an open dynamic
MAS since (1) no control mechanism exists on whether an
agent is joining or leaving this MAS, (2) agents belong to
different groups of interest, and (3) their decision making is
independent of each other [4].

To enable web agents make trust-aware decisions autono-
musly, a crucial step is to identify the most suitable trust mod-
els. Despite the various sophisticated trust mechanics, scales

https://ec.europa.eu/digital-single-market/en/policies/next-generation-internet
https://ec.europa.eu/digital-single-market/en/policies/next-generation-internet

and models proposed in the literature for evaluating an agent’s
trust, the examination of them with different scenarios and
configurations is not trivial. For instance, (1) the enviornmental
conditions should stay the same for comparision, (2) scenarios
require to be synthetic first and then also observered from
practice, (3) a minor change in how to evaluate trust could
lead in a complex scenario to immense different trust-aware
decisions, and (4) different trust models should be applied in
one scenario to fully exhaust the principles within the game
theory [7] behind trust. In most cases, the researchers manually
compare the trust models with each other or against their own
solution which results in a high engineering effort and involves
human judgement leading to unreliable evaluation. On the
other hand, the existing tools for comparing trust models in
MAS are either not related to the web, concerned with direct
or reputation based trust and do not consider content- and
context-related trust dimensions, or restrict trust comparison
to only one agent in the MAS which makes it challenging to
determine the appropriate models and limits the development
of trust in a redecentralized web.

To remedy this issue, it is vital that researchers use a
generic testing environment that is repeatable and supports
the trust analysis of existing solutions. A testing environment
provides insights to users and assists them to compare different
models by experimenting with alternative trust dimensions
and scenarios. Therefore, this paper shows our effort towards
addressing this issue and contributes to improved repeatabil-
ity and easier evaluation of trust models within web-related
scenarios. We showcase aTLAS, a Trust Laboratory of Multi-
Agent Systems which is an open-sourced web-based wizard
testbed to support researchers to evaluate diverse trust models.
aTLAS enables further research towards autonomous trust
handling in a redecentralized web. The testbed is capable of
spawning MAS scenarios, simulating content- and context-
related trust dimensions, facilitating trust comparison among
all web agents, and is independent from the trust models. Our
contributions are as follows:

1) We present an automated and extensible solution to
setup, run, and evaluate trust for MAS web scenarios
which is independent of the employed trust model.

2) Both content and context trust dimensions are imple-
mented in this testbed. To the best of our knowledge,
this is the first trust testbed that takes these dimensions
into account.

3) We implement a prototype of the testbed2 and conduct
evaluations with different configurations and scenarios
to demonstrate its feasibility.

II. RELATED WORK: TRUST TESTBEDS

In most cases, the researchers in the trust community set up
experiments and perform manual comparison with existing
trust models, which is difficult to reproduce and interpret the
results. Therefore, the community have considered the analysis

2available at https://vsr.informatik.tu-chemnitz.de/projects/2020/atlas/

and effects of different trust mechanics and models through the
development of simulators and testbeds.

Some solutions like SuppWorld [8] and TRAVOS [9] built
testbed environments adapted to the special features of their
own trust models. Although such tools can effectively show
the quality of the proposed models, they are restricted to
specific dimensions of the trust model and cannot be used
as a general purpose testbed. One of the most common but
outdated testbed in the MAS domain is ART [10] which
focuses on the development of a general purpose testbed.
This testbed is based on the competition between the agents
within one trust game and between the games themselves.
As the ART testbed does not support general evaluation of
trust technologies many researchers implemented their own
testbeds to assess the performance of their trust models [4].
The TREET [11] testbed was inspired by the ART testbed
to provide a more general-purpose experimentation of trust
and reputation technologies. The authors state that TREET
solves many of the shortcommings of the ART testbed such
as enabling agents to randomly join or leave a simulation run,
it is independent of the format of trust values and supports
both centralized and decentralized trust models. Nevertheless,
TREET is also domain specific and coupled to the marketplace
domain similar to the ART testbed. In addition, the Alpha
testbed (ATB) [12] evaluates trust models that have a decision
making mechanism and ones that do not. However, ATB can
only test the alpha agent while the other agents are simulated.
In contrast, our solution can observe and compare several
agents at a time to identify the behaviour of a group of agents.

Another testbed which is worth mentioning is DART [13]
which employs the prisioner’s dilemma approach. The agents
are represented as a undirected graph where the nodes are the
agents and the edges represent the communication between
agents. Therefore, every agent keeps a neighbourhood list
which represents its connections. Then the agents play differ-
ent rounds of the game with the agents in their neighbourhood.
However, approaching trust with the prisoner’s dillema game
has many disadvantages as stated by the authors of [14].
Agents have no opportunity to isolate untrustworthy oppo-
nents, since they are forced to interact with all competitors.

In summary, aTLAS is different from the existing testbeds
in the following: (1) aTLAS is a generic framework that can
be used with different trust models even if those models were
designed for other domains. Some frameworks like DART are
also domain-independent but most are focused on a specific
problem and are not generic enough to analyze trust properties
of a decentralized web. (2) Our solution can observe and
compare several agents at the same time to identify how the be-
haviour of a group of web agents evolves in the decentralized
web, unlike the ATB or some other testbeds. (3) Due to the
open architecture design we can support multiple trust models
per scenario as long as they are implemented and executable in
aTLAS. (4) aTLAS support different trust scales, which makes
it possible to also combine the output from trust models’
evaluation results. (5) The integration of the web’s open and
dynamic MAS characteristics is not enrooted in none of the

https://vsr.informatik.tu-chemnitz.de/projects/2020/atlas/

reviewed work. Yet, they are highly required for contentual
and contextual trust evaluations on data in a decentralized
web. (6) Most trust testbeds concentrate on evaluating the trust
decisions, but for evaluation it is also important to be able to
check the trust evaluation. The most prominent example from
the literature also suporting this is ATB. (7) The majority of
testbeds is not available online, aTLAS is available via its
project page2, as running demo and by code.

III. ATLAS TESTBED

This section proposes a web-based wizard testbed, named
aTLAS, a Trust Laboratory of Multi-Agent Systems. To ensure
that the experiments are reproducible, aTLAS is publicly avail-
able on its project page2. In aTLAS, the redecentralized web is
modelled as MAS in which an agent represents an individual
web application that can have different business logics.

The testbed enables researchers to test web-related scenarios
based on observations and examine trust. It provides a web
user interface to allow the users interact with the testbed easily.
In every evaluation run, one specific scenario is executed
which involves running a MAS with all the involved agents.
In this process, aTLAS simulates the applications involved in
the scenario and the messages that are communicated between
them by executing the observations. The observed messages
are sent from an agent representing the sending web app in a
certain observation to the receiving web app, again represented
by an agent in the system. It is worth noting that the simulation
of the applications’ business logic is not required because the
observed messages simulate their interaction.

A. aTLAS Architecture

Web App Director

Web Engineer

A

C

B

Interaction & Visualization Trust Laboratory

Scenario

Fig. 1: aTLAS Big Picture

The big picture of aTLAS is shown in Figure 1 which
consists of two main parts: Interaction & Visualization and
Trust Laboratory. The web enginner interacts with the Inter-
action & Visualization part which is responsible for generating
information about the agent’s trust behaviour in a graphical
and/or textual format via aTLAS Web App.

The Trust Laboratory consists of all the agents and a
Director. The included agents, each agent’s characteristics
and the scnearios observations are described beforehand by
the web engineer. The web engineer has the option to either
describe an observed scenario based on practise or design
one synthetically. The system also offers a set of predefined
scenarios, which can be used as a basis of adaption towards the

required scenario description. The Director acts as an interface
for the runtime, and is responsible for preparing a MAS for
the scenario run, monitoring the execution phase and also
deconstructing the MAS. In the preparation phase it initialises
the spawn of agents and takes care of setting up all other
environmental conditions related to the scenario. During the
execution it keeps track of agents’ states with focus on their
trust evaluations and trust-aware decisions and supervises the
agents to execute the run as defined by the web engineer.
After each scenario runtime the Director visualizes all gathered
information about different trust values and relationships via
the Web App for the web engineer and takes care of the
MAS deconstruction. To reduce the waiting time until a first
response is outputted, intermediate summaries of the current
situation can be collected and shown to the web engineer.

For a realization of a distribution of agents on different ma-
chines as in a redecentralized web, the director has a general
API for all hosts to register dynamically during runtime. To
perform such a host registration, every applied host runs a
Supervisor. Each Supervisor knows its maximal capacity, thus
knows the number of agents possible to be spawned on its host
machine in parallel. It works hence mainly as a Director proxy
on each host machine to spawn responsively agents, supervise
the agents on the host, collect their trust logs and takes care
of the cleanup procedure on its host after each scenario run
finished. Therewith it can spawn on any machine with an
internet connection. Each supervisor requires at startup only
some environmental information as where to find the Director,
how much agents can spawn under its control and what its
public adress is for establishing scenario run MASs.

Accordingly, each Supervisor has an interface to spawn and
communicate with the agents, besides its connection to the
director. The agents in turn have additionally two interfaces
for ingoing and outgoing connections to other agents.

B. Scenarios in aTLAS

One component of aTLAS which connects all the concepts
together is the scenario. An evaluation scenario represents a
formal description of all the involved agents, their character-
istics and the events that occur within the scenario run. In the
following, we provide a conceptual model for an evaluation
scenario in aTLAS.
Definition 1 (aTLAS Scenario): The aTLAS scenario S
is an evaluation mechanic defined as a 7-tuple S =
〈A,Sc,O,M,H, P, trace〉 where: A is the set of agents. Sc is
the set of trust scales used by an agent. O is the observations
which is a set of events with a certain content between two
agents. M is the set of trust metrics used by the agents where
each metric maps the triple agent, content and context to a real
number of one trust scale. The triple can also exist with only
one of its elements, e.g. a certain metric may only calculate the
popularity of another agent without considering any content
or context. H is the set of trust history descriptions per agent
towards other agents. Each metric requires certain preferences
according to its factors or dependencies. Each preference P
maps a metric M of an agent to a certain setting, modelled

by the power set of the preference states P. trace maps each
observation to a timestamp.

O = {event | event ∈ A2 × Content} (1)
M = {ma,k | a ∈ A, k ∈ N,

ma,k : A× Content× Context 7→ R} (2)
P = {p(ma,k) ∀ ma,k ∈M | p : M 7→ P(P)} (3)

trace : A2 × Content 7→ t (4)

While the trace mapping is described as a mapping to times-
tamps, the conceptual importance for aTLAS are not the
exact timestamps but the sequentual dependencies between
observations. To reproduce a scenario observed in practice,
we require to keep the order of the observations as they
happened. One order change could lead to a different outcome
in trust evaluations and thus change the result of a trust-aware
decision. A strict order of observations in a linear fashion
without one timestamp being taken several times could on the
other hand also lead to corruption in the context of closeness to
the observed reality. Either the observations may have occured
in parallel, or were not observed correctly or two observations
were completely independent of each other in a scenario.

Due to this, the aTLAS scenario observations follows a
soft order which means that multiple executions of a scenario
may have a different final sequence of executed observa-
tions. This is realised with a reverse annotation such that
each observation knows the other observations required to
be executed before itself. With this knowledge, a dependency
graph D : (O,dependency), is constructed, where the nodes
are the observations and the edges represent the directed
dependencies. To prevent dead locks during a scenario run,
the dependency graph in a scenario requires to be loop-free.

C. aTLAS Process

An overview of the aTLAS Trust Laboratory process is
illustrated as BPMN in Figure 2. The actors involved in this
process are the Director, Supervisors, and Agents. The process
consists of 8 main steps which are discussed in the following.
Step 1. Validate scenarios: Initially, the Director receives
the aTLAS scenario from the Web App. The Director is
then responsible to validate the scenario for runtime by: (1)
assessing whether the available Supervisors have the capacity
to run the scenario with respect to the required number of
agents. The check fails if there is no free Supervisor, the
total capacity of all available Supervisors is too low or the
demanded number of agents per Host is not applicable to the
capacity and availability of Supervisors. (2) the scenario is
validated to resolve syntactical and consistency issues. The
process will abort in case any of the checks fail. Upon sucess,
the Director will create a distribution of agents per Supervisor.
Step 2. Distribute scenario: After the scenario is validated,
all the Supervisors in the automatically created distribution
receive the scenario from the Director.
Step 3. Setup agents: The Supervisor will setup the agents
according to the configurations specified in the scenario. As
the agents might spawn on different hosts, the supervisors

establish an agent discovery via the director to identify the
corresponding IP address and port number.
Step 4. Distribute discovery: The director gathers the Super-
visors’ local discovery and distributes it back to the agents.
Step 5. Supervise scenario: The director surpervises the sce-
nario to ensure that the observations are executed in the correct
order. It starts with a synced starting signal to all the agents,
overwatches the scenario progression and ends the scenario run
when all observations are executed. The end signal is required
because all agents will have to run as long as all events
specified in the Observations O are processed. Even though,
they might have finished their observation executions, some
may still be required for passing trust testimonies according
to the requests of other interacting agents.
Step 6. Run scenario: After the start signal, each agent will
execute according to the scenario configurations until the end
signal is received from the director. As soon as an observation
is done, the agent reports via its supervisor to the director, who
distributes this event to all other agents. With this supervision,
aTLAS provides a correct playback of the observations.
Step 7. Send logs: During the scenario run, the Supervisor
gathers the logs of its spawned agents and sends updates
regularly to the Director until the scenario is finished.
Step 8. Create report: In parallel with the scenario su-
pervision, the Director continuously receives logs from all
supervisors until the scenario finishes. For each executed
observation, it will update the final report for the web engineer
and push this update also to the web UI.

IV. IMPLEMENTATION & EVALUATION

We implemented a prototype of aTLAS in Python, which is
accessible via our project page2 as live demo and by source
code. The testbed is implemented according to a two-level
architecture to seperate the business logic on each host from
the director and the web app. aTLAS exploits Django Web
framework for developing the web app and Django Chan-
nels framework for it’s asynchronous support with websocket
capability. While the director communicates with clients or
supervisors via websockets, the agents communicate via TCP
sockets to be closer to most web communication.

0 AGENTS = [’A’ , ’B ’]
1 OBSERVATIONS = [
2 { ’ o b s e r v a t i o n _ i d ’ : 1 ,
3 ’ b e f o r e ’ : [] ,
4 ’ s e n d e r ’ : ’A’ ,
5 ’ r e c e i v e r ’ : ’B ’ ,
6 ’ message ’ : ’ R e d e c e n t r a l i z a t i o n ’ }]
7 HISTORY = { ’A’ : { ’B ’ : 1 . 0 } , ’B ’ : { ’A’ : 0}
8 METRICS_PER_AGENT = {
9 ’A’ : [’ d i r e c t e x p e r i e n c e ’ ,

10 ’ p o p u l a r i t y ’ ,
11 ’ recommendat ion ’] ,
12 ’B ’ : [’ d i r e c t e x p e r i e n c e ’ ,
13 ’ p o p u l a r i t y ’ ,
14 ’ recommendat ion ’] }

Listing 1: Scenario Snippet

The scenarios are described according to a domain-specific
language (DSL) which is realized with a Python configuration
file. A snippet of a scneario is shown in Listing 1.

H
os

t
H

os
t S
u
p
er

v
is
or

S
u
p
er

v
is
or

A
ge

n
t

A
ge

n
t

D
ir

ec
to

r
D

ir
ec

to
r

Distribute
Scenario

Create
Report

Report

Setup
Agents

Run
Scenario

Send Logs

Scenario finished

Validate
Scenario

Scenario finished

1 21 2 4 5 88

33 77

66

ScenarioScenario

Report

Distribute
Discovery

Supervise
Scenario

4 5

Fig. 2: aTLAS Process

In the following, we demonstrate the feasibility of the pro-
posed aTLAS testbed using different scenarios and explore the
scalability with different number of agents and observations.

A. Feasability

The first part of the evaluation aimed to evaluate the feasability
of aTLAS for examining trust evaluation and trust-aware deci-
sion making. Three different scenarios are created to illustrate
how different trust metrics impact the final trust value. For
each unique scenario the process demonstrated in Section III
is tested to analyze the behaviour of the approach on trust.
These scenarios are availble at the running demo2.

The different scenarios rely on a common setting with four
agents {A, B, C, D} and are distinguished in the metrics
used by them. We use the direct experience, popularity,
recommendation, authority and topic metrics defined in [15].
Each scenario consists of six observations, where A first sends
three messages to B and then C sends three other messages
to B. The fourth agent (D) is included for recommendation
purposes. Further, all agents in our scenarios rely on the trust
scale from Marsh and Briggs [16], which ranges from -1.0
(full distrust) over 0.0 (ignorance) to 1.0 (full trust). In the
scenarios’ settings, we assume that all agents trust each other
fully from the beginning, except B which intially does not
know neither A nor C. Thus, all history values are 1, but B’s
history towards A and C is set to 0. To make a final decision
upon trust evaluation, the final trust value is calculated as a
weighted average of respective trust values per metric and
agent. For demo purposes all metrics are weighted with 1.

Scenario 1: In the first scenario all agents use the direct
experience, popularity, and recommendation metrics. Due to
the very positive recommendation of D (for all agents 1.0)
the trust values of A and C continuously increases. Since
both agents have the same conditions, the trust values from B
towards them increases per observation by the same amount.

Scenario 2: The second scenario extends the previous one
by adding the authority metric. C therefore gets an authority
status. In this case, even though C is an authority, B still has
the same trust history towards C. With this status, C increases
its trust at B faster than A.

Scenario 3: In the third scenario, we further add a topic
metric. Accordingly, the topic web engineering, which is
included in the other two scenarios is also considered for
calculating the trust value. We assume that all agents fully
trust each other on topic Web Engineering, except for B, which
does not know A and C, and for that reason does not fully trust
them on any topic. This means, that all topic trust settings are
initialized with 1.0 for the topic Web Engineering, besides at
B where A and C are trusted at this topic with 0.5. The metric
is feeded with new values for each final trust value calculated
for an agent as this was a new trust value for a certain topic.
It interacts therewith a bit like a direct trust but dependend on
the topic. The results show that it impacts the values for A
and B differently. Both recieved 0.5 at the beginning, which
gave them a boost at the first message send to B, but A is in
the final value still under the 0.5 and thus the topic trust also
drops slightly. C in comparision hits the 0.5 marker and thus
can improve the topic trust value over time without decrease.

To summarize, the results verify that the aTLAS works
for the different scenarios and can provide valid trust values
depending on the different scenario preferences.

B. System scalability

One concern with respect to all testbeds is how they scale
with the growing number of nodes and messages. Therefore,
we explored the scalability of aTLAS to show its performance
depending on the number of agents and observations.

The experiments were carried out on two PCs in a private
LAN. PC 1 is a Windows 10 PC with an Intel Core i7 8700K
CPU, 16GB DDR4 RAM and a NVIDIA GeForce GTX 1080
Ti connected via cable. The second PC (PC 2) is a MacBook
Pro A1990 (EMC 3215) with Core i9 connected via Wifi.
During the experiment, each PC runs one supervisor and each
supervisor takes half of all agents involved, e.g. one scenario
might involves 10 agents, hence each supervisor sets up 5.

To test the scalability we take the first scenario of the
feasability tests as a basic scenario and create new scenarios
with an upscale in either the number of agents or observations.
For each experiment, the basic scenario is adapted to increase
the number of agents or observations, thereby we used the

amounts of 10, 20, 50, 100, 200, 500 and 1000. The process
of adding agents does not change anything regarding the trust
values in the scenario, but are only initialized and later cleaned
up again. Other tests have been performed to upscale the
number of observations in the basic scenario. The worst case
for the runtime of observations is used, which is a long chain
of observations depending always on the one before and that
the supervisor changes for each observation. Therewith the
highest waiting time for each supervisor is added as it has
to wait for the other one to finish an observation and for the
director to communicate this before it can resume.

For each scenario, we measure three different times: prepa-
ration, execution and clean up. The preparation and exe-
cution time is the time it takes to perform step 1-4 and
5-8 respectively in the aTLAS process and the clean up
time is an implemented logic to dismantle the created MAS
and free capacity at the supervisors. For better precision of
our measurment, we run each testing scenario 10 times and
calculate for each of the three times the average and visualize
the results in Figure 3. Fig. 3a compares the different time with
respect to different agents and Fig. 3b shows the corresponding
time for an increase number of observations. In Fig. 3b, the
preparation plot is not visible because the clean up plot covers
it completely. This happens as both of these measurements are
as an average below 1 second whereas the Execution time is
significantly higher.

0 250 500 750 1000
Number of Agents

0.5

1.0

1.5

2.0

2.5

Ti
m

e
in

 S
ec

on
ds

Preparation
Execution
CleanUp

0 250 500 750 1000
Number of Observations

0

100

200

300

400

500 Preparation
Execution
CleanUp

Fig. 3: aTLAS Scalability

The results show that the agents do not increase the tim-
ings as much as the observations do for the execution. The
overtaking of the execution time at the upscaling of agents is
attributable to the long list in each lookup where agents are the
key. This happens often due to discovery purposes. Overall the
timings underline the scalability of aTLAS, as the only long
waiting time is coming at a long chain of badly connected
observations. Even in such a worst case aTLAS executes 2
observations per second in average.

V. CONCLUSION

In this paper, we presented a web-based wizard testbed named
aTLAS2 for examining trust in a decentralized web. The main
contributions of aTLAS are its web relation and openness for
several trust scales, metrics and models. In addition, it supports
examining both contentual and contextual trust dimensions.
The evaluation prooved its feasability and scalabilty.

In future work, we want to improve the current prototype
by considering the following aspects: (1) The UI should allow
defining scenarios, (2) the trust examination results should be
presented to the web engineer using a graphical visualization,
(3) and to support more trust models, metrics and scales, an
interface for uploading those on the fly would improve the
systems examination power.

REFERENCES

[1] A. V. Sambra et al., “Solid: A platform for decentralized social appli-
cations based on linked data,” Technical report, MIT CSAIL & Qatar
Computing Research Institute, Tech. Rep., 2016.

[2] L.-D. Ibáñez et al., “Redecentralizing the web with distributed ledgers,”
IEEE Intelligent Systems, vol. 32, no. 1, pp. 92–95, 2017.

[3] J. Sabater and C. Sierra, “Regret: reputation in gregarious societies,” in
Proceedings of the fifth international conference on Autonomous agents,
2001, pp. 194–195.

[4] H. Yu et al., “A Survey of Multi-Agent Trust Management Systems,”
IEEE Access, vol. 1, pp. 35–50, 2013.

[5] V. Siegert, “Content- and Context-Related Trust in Open Multi-agent
Systems Using Linked Data,” in International Conference on Web
Engineering. Cham: Springer International Publishing, 2019, pp. 541–
547.

[6] A. Ciortea et al., “A Decade in Hindsight: The Missing Bridge Between
Multi-Agent Systems and the World Wide Web,” in Proceedings of
the International Conference on Autonomous Agents and Multiagent
Systems, 2019.

[7] D. G. Mikulski et al., “Trust dynamics in multi-agent coalition forma-
tion,” in Unmanned Systems Technology XIII, vol. 8045, Orlando, 2011,
pp. 221–267.

[8] J. Sabater, “Evaluating the regret system,” Applied Artificial Intelligence,
vol. 18, no. 9-10, pp. 797–813, 2004.

[9] W. L. Teacy et al., “Travos: Trust and reputation in the context of
inaccurate information sources,” Autonomous Agents and Multi-Agent
Systems, vol. 12, no. 2, pp. 183–198, 2006.

[10] K. K. Fullam et al., “A Specification of the Agent Reputation and Trust
(ART) Testbed: Experimentation and Competition for Trust in Agent
Societies,” in Proceedings of AAMAS ’05. New York, New York, USA:
ACM Press, 2005, pp. 512–518.

[11] R. Kerr and R. Cohen, “Treet: the trust and reputation experimentation
and evaluation testbed,” Electronic Commerce Research, vol. 10, no. 3-4,
pp. 271–290, 2010.

[12] D. Jelenc et al., “Decision making matters: A better way to evaluate
trust models,” Knowledge-Based Systems, vol. 52, pp. 147–164, 2013.

[13] A. Salehi-Abari and T. White, “Dart: A distributed analysis of reputation
and trust framework,” Computational Intelligence, vol. 28, no. 4, pp.
642–682, 2012.

[14] A. A. Adamopoulou and A. L. Symeonidis, “A simulation testbed for
analyzing trust and reputation mechanisms in unreliable online markets,”
Electronic Commerce Research and Applications, vol. 13, no. 5, pp.
368–386, 2014.

[15] Y. Gil and D. Artz, “Towards content trust of web resources,” Journal
of Web Semantics, vol. 5, no. 4, pp. 227–239, Dec 2007.

[16] S. Marsh and P. Briggs, “Examining Trust, Forgiveness and Regret as
Computational Concepts,” in Computing with Social Trust, J. Golbeck,
Ed. London: Springer, 2009, pp. 9–43.

	Introduction
	Related Work: Trust Testbeds
	aTLAS Testbed
	aTLAS Architecture
	Scenarios in aTLAS
	aTLAS Process

	Implementation & Evaluation
	Feasability
	System scalability

	Conclusion
	References

