
WTA: Towards a Web-based Testbed
Architecture

Valentin Siegert[0000−0001−5763−8265] and Martin Gaedke[0000−0002−6729−2912]

Distributed and Self-organizing Systems Group, Technische Universität Chemnitz,
Straße der Nationen 62, 09111 Chemnitz, Germany

{valentin.siegert,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. Tests, evaluations, and solution comparisons in complex use
cases are often realized by creating a testbed for a domain of use cases
and solutions. Web-based testbeds add key advantages like results shar-
ing, remote test execution, and collaboration. Focusing on their research
objectives, creators see their testbeds as a means to that end. The re-
sulting web-based testbeds are similar in structure and functionality, but
there is no common architecture supporting their creation, introducing
redundant design efforts. Therefore, we determine structural similarities
based on insights into the architecture of current web-based testbeds,
from which we derive a generic web-based testbed architecture. This
framework of reference will help to develop future testbeds focusing on
the testbed domain instead of reinventing general testbed functionality.

Keywords: Web · Testbeds · Software architecture

1 Introduction

Evaluations are an essential step for proving the capabilities of newly created
solutions in developing software or publishing research findings. While limited
feasibility and scalability can often be tested manually in the early stages with re-
spective manual effort, comparing solutions in complex use cases is not possible.
However, many conduct their evaluations in software development and research
manually or within their environment to prove the initial step in the correct
direction [15]. The need for evaluating solutions in complex use cases is emerg-
ing from the industry and the research community as first stage evaluations are
limited by design. Proof of feasibility and scalability in bigger and more complex
use cases as well as insights by comparing different solutions at such use cases
establish the need for testbeds. These can support the evaluation and give those
insights into complex constructs as they can be set up for different test runs in
the same environmental conditions. Additionally, testbeds can also test a com-
bination of known solutions on how they work together in exemplary use cases.

On the other hand, testbeds are often created out of the need for proof or
insights. The testbeds’ development process thus is not the main focus. Instead,
the potentially obtained knowledge out of the testbed’s results is the motivation.
With such focus, researchers tend to develop their testbeds well suited for their



2 V. Siegert and M. Gaedke

usage, which results in a limitation of testbeds and followingly more testbeds
for slightly different motivations. For example, in the field of multi-agent trust
management systems, Yu et al. [15] describe that researchers tend to design their
evaluation environments, which are often also own testbeds.

In the past years, more and more web-based testbeds were presented and
developed. The web-based architecture adds to testbeds key advantages like
results sharing, remote test execution, and collaboration. They exist in different
domains like Web Applications, Internet of Things (IoT), Semantic Web, Deep
Web, and many more and are conceived from small-sized testbeds on one machine
to globally distributed ones like PlanetLab [11], a testbed for network services.
As web-based testbeds are not restricted to test things in a web-related domain,
researchers of other domains make use of them as well. Some recent examples are
microgrids [13], railways [10], or also underwater acoustic communication [16].

Even though the research domains are different, current web-based testbeds
make use of similar concepts. Thus, most researchers seem to have a common
understanding of how a web-based testbed needs to be implemented. Neverthe-
less, to the best of our knowledge, a general architecture for web-based testbeds
does not exist. Cavalieri et al. [4] propose some principles, but they focused on
industrial production systems and date back to the early 2000s. In other terms,
researchers have to reinvent a web-based testbed for their own needs without
being able to build upon a given architecture. Besides the manual reinvention
effort, especially researchers from non-computer science domains might not ex-
ploit the full potential of a web-based testbed due to a lack of knowledge about
the available functionalities and architectural choices. As testbeds are a means
to achieve experimentation and evaluation objectives, their architecture and de-
velopment are not of prime concern to most researchers and any reduction in the
effort will allow them to focus more on their original research activities. A web-
based testbed architecture can limit these several reinventions and in the best
case also limit the reoccurring need for a new testbed due to better reusability.

With this work, we provide insights into relevant web-based testbeds and
determine their structural similarities to create a web-based testbed architec-
ture. Our approach can improve existing testbeds and give future needs of tests,
evaluations, and comparisons of different solutions a chance to be done faster
without having to reinvent what others already elaborated for their own needs.
Our contributions are as follows: (1) We present a software architecture for web-
based testbeds based on known principles and structural similarities in current
testbeds. (2) The architecture integrates key advantages of the web like results
sharing, remote test execution, and collaboration.

2 Recent Work: Web-based Testbeds’ Similarities

The most common conceptual similarity to realize a web-based testbed architec-
ture in recent work is a concept with three actors: (1) the central node within
the testbed, (2) an experimenter as a user of the testbed, and (3) the laboratory
itself with its testbed environment capability to manage evaluations. The central



WTA: Towards a Web-based Testbed Architecture 3

node of a web-based testbed is often realized as a web server, which interacts
as the interface between the experimenter and testbed. On the one side, it com-
municates with the experimenter via its web application. On the other side, the
central node realizes the management of the testbed by preparation, execution,
and clean-up of one evaluation [12]. The user interface is not necessarily a web
UI [2], but in many cases it is. Such a UI supports thereby the users’ work with
the testbed by visualizations and maybe some wizard alike guides.
The Experimenter may only have central access via the web application on the
testbed, but some indicate their testbed environment elements also as directly
accessible. Such direct access can be distinguished into access to the environment
elements with organizational relation [1] or to the ones required for the evaluation
execution itself [14]. It is often realized via ssh and indicates the distribution of
the testbed’s actors on different machines.

The testbed’s actual feasibility is delivered by the testbed environment and
its elements, which represent the testbed’s domain-specific motivation. In general
it exists to set up the initial situation for each evaluation, to execute, and later
collect all required results measured during execution. The environment elements
interact therefore according to a description created by the experimenter. Some
approaches highlight for this description also how to schedule it and call the
elements of such procedures job, trace or observation [5, 12, 14].

Several approaches work on not only single but multi-tier architectures within
all described technical actors. Multi-tier approaches appear e.g. at the web ap-
plication which is developed in a multi-site fashion [6] or at the testbed envi-
ronment, which can be organized in several tiers by domain [8], by evaluation
need [2] or by testbed management need [1, 12]. Besides, some also present how
to create the central node in a multi-tier fashion [6, 8, 9].

The literature supposes also access points for different testbeds, e.g. model-
based testbed creation [3] or an EaaS architecture [9]. These approaches add
a meta management layer, such that the original organization elements of the
environment and central node of one testbed are also dynamically created by
the experimenters’ description.

3 Web-based Testbed Architecture (WTA)

To achieve a good web-based testbed architecture, several goals emerge from
the identified conceptual similarities and the principles by Cavalieri et al. [4].
One architectural goal is to have a central node that serves as the interface
between experimenters and testbed. It hereby should serve a web UI for the
experimenters, independent of which device they use for access. We call this
central node Testbed Server, which should contain besides the web application
for the experimenter the laboratory management, which we call Testbed Director.

The web UI for the experimenters should be more than only the access point
but deliver certain usability features to the experimenters. Thus, it should sup-
port all experimenters, also the rather inexperienced ones with a clear evaluation
process and how to use the testbed. Wizard-like support with visual and textual



4 V. Siegert and M. Gaedke

help would be one way to realize this. Further, the UI needs to use a stan-
dardized representation according to the testbed’s domain in visual and textual
descriptions of any testbed artifacts, like measurements, use cases, evaluation de-
scriptions, or results. As a testbed serves the need for testing, the experimenter
should be able to get creative with combinations of possible solutions or use
cases. Therefore, the web UI requires a playground for experimenters to change
preferences of an evaluation, a set of pre-created artifacts like measurements or
use cases, and a possibility to upload own created elements, like features to test
or own created artifacts. The web UI should also contain a visualization of used
schedulers within the testbed, if its domain requires such as in [5, 12, 14].

To have the possibility of choosing pre-created artifacts for evaluation prefer-
ences, web-based testbeds require a place to store its artifacts in a central place.
We call this place the Testbed Library, originating from the library component
in Cavalieri et al. [4]. The provided use cases are better if they are more complex,
meaning not only many actors or events, but also include unforeseen events.

As a web-based approach, key advantages of the web like sharing, remote
execution, and collaborative work should be included in the architectural design.
Hereby, especially the Testbed Library and the web UI require to enable the
user to share stored artifacts, to work collaboratively on artifacts, and to start a
remote evaluation. The testbed server thus requires to proxy any experimenter
for the evaluation run and has to ensure that one evaluation finishes when it is
started or gives feedback to the experimenter on why it stopped intermediately.
Combining direct access of elements with the named web’s key advantages, any
element of a web-based testbed should be accessible via the web.

The Testbed Director should be the experimenter’s proxy accordingly and
do everything to manage one evaluation execution. Therefore, it needs to set up
the initial evaluation situation in the Testbed Environment, start the execution,
gather all required results, and insure following evaluations with a releasing of
preserved testbed performance for an evaluation execution.

A Testbed Environment is required to serve the actual testbeds functionality
of evaluations. Depending on the testbed’s domain and motivation of creation
its environment has to be designed. Mostly it is a distributed system of different
actors simulating a situation for one use case. It can thereby involve devices and
simulated or virtualized elements. A separation of organizational and executional
elements in the Testbed Environment will improve the evaluations’ execution [4].
Not only environment elements should be separated into these two categories,
but also artifacts and communication channels.

A clear hierarchy supports the future adaptability of a testbed. The testbed
server is hereby the root, follows with organizational elements first, and ends
with executional elements. To set up the distributed testbed faster, a bottom-
up registration supports the process of dynamic ordered evaluations. Any ele-
ment besides artifacts and used communication channels can be organized in a
multi-tier fashion if required for the testbed’s domain. While the organizational
elements of the testbed are mostly described by the testbed’s creator, the ex-
ecutional ones can also be configured by the experimenters according to their



WTA: Towards a Web-based Testbed Architecture 5

evaluations. EaaS infrastructures form the exceptions where also organizational
elements are partially described by the experimenters.

A web-based testbed serves degrees of freedom in a 2-dimensional space.
One is the freedom of experimenter interactions and one is the freedom of the
testbed environment elements. In both dimensions, the creators require to iden-
tify the sweet spot and design the testbed accordingly. In terms of experimenter
interactions it is a dimension with three possible values: (1) a testbed can be
a strict demo without any possibility for an experimenter to choose anything,
(2) a testbed with limited available possible use cases and solutions to choose
of, and (3) a full creative playground where the experimenters can live out their
creativity to create their preferred evaluation with many possibilities to choose
and change individually. The dimension of the testbed environment elements’
freedom is a scale between two extremes, where both are hindering a valuable
evaluation execution. One is the full control of the testbed organizational ele-
ments over the executional ones, and the other is the opposite, so no control of
the organizational elements over the executional ones.

Web-based testbeds should also be open for future changes in their architec-
ture. Therefore a core of components should be given, but similar to an onion
architecture [7], the creators should include interfaces for future changes accord-
ing to newly discovered technology. A testbed can thereby serve more similar
needs. Followingly the number of testbeds in one domain can decrease.

3.1 WTA Elements

Testbed Server

Testbed Director

Web UI

Testbed Library

Testbed 

Environment

Communication 

Channel Executional 

Channel

Organizational 

Channel

Organizational 

Element

Executional 

Element

Artifact

Scheduler

Result

Log

Measurement

Evaluation 

Description

Use Case

Fig. 1. Web-based testbed architecture elements.

The testbed server is the root of all involved elements and includes a Web UI, the
Testbed Director, and the Testbed Library. Together with the testbed environ-



6 V. Siegert and M. Gaedke

ment, they build the WTA components, which will be described in the following
subsection with their interactions. Besides the WTA components, WTA includes
elements like Scheduler, Artifact, and Communication Channel. Schedulers ei-
ther order events into a sequence or schedule them on a timestamp if an evalua-
tion description contains events or interactions to happen during the evaluation.
Offering in a testbed several schedulers to choose from can be necessary because
new insights into the testbed’s domain could lead to new scheduling approaches
in according evaluations. In WTA the schedulers relate to the events occurring
in the testbed’s domain and should be choosable by the experimenters for each
evaluation if more than one is implemented.

Every web-based testbed has due to its distribution at least one communi-
cation channel to the experimenters’ user agents. WTA-based testbeds need to
communicate in the purpose of evaluation organization and maybe also within
an executed use case between executional testbed environment elements. The
organizational communication channels require thereby to be separated from
the executional ones, such that they do not interfere with running evaluations.
While the organizational channels mainly stick to web technology, executionals
are influenced by the testbed’s domain.

The artifacts of a WTA testbed are all the data within the testbed’s pro-
cess being stored, consumed, or both. Besides the evaluation results, which are
the output artifacts, also input artifacts like standardized measurements, (real-
world) use cases, or evaluation descriptions of experimenters exist in WTA. An
instance of a WTA should also have measurements and use cases available to
choose from in the Testbed Library. Additionally, some domains and their use
cases might produce intermediate artifacts like logs, which need to be communi-
cated to other environmental elements within the use case or serve an interme-
diate contemplation of an ongoing evaluation.

All WTA elements require to be accessible online. Thereby, experimenters can
have potentially direct access to them and easily share especially the artifacts of a
testbed. Maintaining a testbed and its executions is conducted in the distributed
system of a WTA testbed with more efficiency due to such online accessibility.
Therefore, all elements require a valid URL to be queried via the web.

3.2 WTA Components

WTA splits into three main components as in the conceptual similarities and
includes the Web UI (1) such that the testbed server communicates with several
user agents and serves as access points for the experimenters. We propose the
implementation of the components in the component diagram in figure 2. The
Web UI is then connected to two other components: the Testbed Director (2)
and the Testbed Library (3). Therefore, the Testbed Director is the second half
of the conceptual similarities’ central node, and thus manages the Testbed En-
vironment (4). It organizes the execution of a given evaluation description and
later gathers all results from the environment.

The Testbed Library offers an interface for Web UI and Testbed Director
and saves all central artifacts of the testbed. Hereby, it saves the results of



WTA: Towards a Web-based Testbed Architecture 7

Testbed ServerTestbed Server

U
se

r 
A

g
en

t 11
Web UI

Testbed 

Director

Testbed 

Director

Testbed 

Library

Testbed 

Library

T
es

tb
ed

 
E

n
v
ir

o
n
m

en
t

33

22

44

Fig. 2. Web-based testbed architecture components.

evaluations, real-world use cases, measurements, and other in advance created
setup instructions for the testbed environment. All experimenters can access
the library via the UI to either checkout results of passed evaluations or to
create their next evaluation on the testbed. With such a library the ease of all
experimenters is supported, such that they can focus on their main motivation
of tests and evaluations and do not have to create everything from scratch.

The Testbed Environment is the most crucial aspect of the testbed as it
realizes the required functionality. Thereby, its structure is highly dependent on
the testbed’s domain. It could be structured as in recent work from single-tier to
multi-tier in as many layers as required for the testbed’s domain. Also, additional
layers to manage the correct testbed execution could be realized within.

The given architecture can by all components besides the User Agent be
realized in a single- or multi-tier architecture. Figure 2 is hereby showing a
single-tier version. Recent work proposes, that some domains or usages of a
testbed might require such multi-tier testbed not only in executional elements
but also in components like the Testbed Director or the Testbed Library.

4 Conclusion

In this work, we identified the recurrent innovation of web-based testbeds in
different domains without a common architecture. To close the gap of especially
testbed creators inexperienced in computer science towards full exploitation of
the web-based testbed advantages, we identified conceptual similarities of recent
web-based testbeds. Consequently, we presented a web-based testbed architec-
ture (WTA) with emerging architectural goals out of the identified coneptual
similarities and the principles initially proposed by Cavalieri et al. [4] which
are still crucial. It conflates the common understanding and key advantages of
the web. In the future, we need to support this first approach with a precise
method supporting any testbed developer in his work, which will help especially
researchers from non-computer science domains.

Acknowledgements We would like to thank Sebastian Heil for his valuable
conceptual discussion and input. This work is funded by the Deutsche Forschungs-
gemeinschaft (German Research Foundation) - Project-ID 416228727 - SFB 1410.



8 V. Siegert and M. Gaedke

References

1. Adjih, C., Baccelli, E., Fleury, E., et al.: FIT loT-LAB: A Large Scale Open Ex-
perimental loT Testbed. In: IEEE World Forum on Internet of Things, WF-IoT
2015 - Proceedings. pp. 459–464 (2015)

2. Akyildiz, I.F., Melodia, T., Chowdhury, K.R.: Wireless multimedia sensor net-
works: applications and testbeds. Proceedings of the IEEE 96(10), 1588–1605
(2008)

3. Bertolino, A., De Angelis, G., Frantzen, L., Polini, A.: Model-based generation of
testbeds for web services. Springer (2008)

4. Cavalieri, S., Macchi, M., Valckenaers, P.: Benchmarking the performance of man-
ufacturing control systems: Design principles for a web-based simulated testbed.
Journal of Intelligent Manufacturing 14(1), 43–58 (2003)

5. Cecchet, E., Udayabhanu, V., Wood, T., Shenoy, P.: BenchLab: An Open Testbed
for Realistic Benchmarking of Web Applications. In: The 2nd USENIX conference
on Web application development. pp. 37–48 (2011)

6. Gao, Y., Zhang, J., Guan, G., Dong, W.: LinkLab: A Scalable and Heterogeneous
Testbed for Remotely Developing and Experimenting IoT Applications. In: 2020
IEEE/ACM Fifth International Conference on Internet-of-Things Design and Im-
plementation. pp. 176–188 (2020)

7. Khalil, M.E., Ghani, K., Khalil, W.: Onion architecture: a new approach for xaas
(every-thing-as-a service) based virtual collaborations. In: 2016 13th Learning and
Technology Conference (L T). pp. 1–7 (2016)

8. Kouřil, D., Rebok, T., Jirśık, T., et al.: Cloud-based Testbed for Simulation of
Cyber Attacks. In: 2014 IEEE Network Operations and Management Symposium
(NOMS) (2014)

9. Lanza, J., Sánchez, L., Santana, J.R., et al.: Experimentation as a Service over
Semantically Interoperable Internet of Things Testbeds. IEEE Access 6, 51607–
51725 (2018)

10. Neema, H., Koutsoukos, X., Potteiger, B., Tang, C.Y., Stouffer, K.: Simulation
Testbed for Railway Infrastructure Security and Resilience Evaluation. In: 7th
Symposium on Hot Topics in the Science of Security (2020)

11. Peterson, L., Roscoe, T.: The Design Principles of PlanetLab. ACM SIGOPS op-
erating systems review 40(1), 11–16 (2006)

12. Siegert, V., Noura, M., Gaedke, M.: aTLAS: a Testbed to Examine Trust
for a Redecentralized Web. In: To be published in: Proceedings of The 2020
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelli-
gent Agent Technology (2020)

13. Vargas-Salgado, C., Aguila-Leon, J., Chiñas-Palacios, C., Hurtado-Perez, E.: Low-
cost web-based Supervisory Control and Data Acquisition system for a microgrid
testbed: A case study in design and implementation for academic and research
applications. Heliyon 5(9) (2019)

14. Werner-Allen, G., Swieskowski, P., Welsh, M.: MoteLab: A Wireless Sensor Net-
work Testbed. In: 4th International Symposium on Information Processing in Sen-
sor Networks. pp. 483–488. IEEE (2005)

15. Yu, H., Shen, Z., Leung, C., Miao, C., Lesser, V.R.: A Survey of Multi-Agent Trust
Management Systems. IEEE Access 1, 35–50 (2013)

16. Zia, M.Y.I., Otero, P., Siddiqui, A., Poncela, J.: Design of a Web Based Underwa-
ter Acoustic Communication Testbed and Simulation Platform. Wireless Personal
Communications (2020)


