
Trusting Decentralized Web Data in a
Solid-based Social Network⋆

Valentin Siegert�[0000−0001−5763−8265], Dirk Leichsenring[0009−0008−6354−0019],
and Martin Gaedke[0000−0002−6729−2912]

Distributed and Self-organizing Systems,
Chemnitz University of Technology, Chemnitz Germany

{valentin.siegert,dirk.leichsenring,martin.gaedke}@
informatik.tu-chemnitz.de

Abstract. In our current data-centric society, there is a rising concern
among individuals regarding their privacy and the degree of control they
have over their personal data. In response to this growing demand for
transparency and control, a recent initiative for web re-decentralization
has emerged, wherein web applications no longer store data centrally.
One of the prominent approaches aimed at re-decentralizing the web is
Solid. Solid facilitates data storage in decentralized pods secured with
web access control, enabling seamless connectivity of diverse data. How-
ever, the integration of decentralized data from various third-party pods
in web applications poses a significant challenge, as the data’s trustwor-
thiness may be compromised, potentially leading to malicious or harmful
outcomes. Therefore, data integration necessitates a trust-aware decision,
i.e., the extent to which the data is trustworthy enough to use despite
its high heterogeneity. To enable such trust awareness for web applica-
tions utilizing decentralized data, we propose a trust-aware framework
called TrADS for decentralized social networks. TrADS leverages the
MVC pattern of web applications to integrate external data from Solid
pods trust aware. The potentially malicious and harmful status of ex-
ternal data is an end-user concern. A web application must therefore be
trust aware to provide a better user experience. Therefore, we evaluate
the proposed trust-aware decentralized social network in terms of usabil-
ity and transparency with 53 end users through an empirical study. The
results demonstrate that the trust awareness component in TrADS can
support end users in their trustworthy user experience.

Keywords: Trust · Social Linked Data (Solid) · Re-decentralization of
the Web · Decentralized Web · Responsible Web.

1 Introduction

The web has increasingly become a collection of closed silos of resources [5] due
to commercialization. However, more and more attention is being paid to data

⋆ This paper is supported by the European Union’s HORIZON Research and Innova-
tion Programme under grant agreement No 101120657, project ENFIELD (European
Lighthouse to Manifest Trustworthy and Green AI)

mailto:valentin.siegert@informatik.tu-chemnitz.de


2 Siegert et al.

sovereignty [3], as full data control is lost as soon as the data is placed in a
closed silo. As a result of this loss, data privacy is also restricted accordingly.
Various projects are working on decentralizing the web for this reason, but also
because of its originally decentralized architecture. For example, with its Next
Generation Internet Initiative1, with Gaia-X2 and also with the General Data
Protection Regulation (GDPR)3, the EU is driving decentralization forward for
political reasons. However, projects such as Solid [13] and Fediverse projects such
as Mastodon4 are also working on the decentralization of the web. The Fediverse
is built across multiple instances that can communicate with each other, allowing
users to exchange their data between them and thus use it in a decentralized
manner [6]. In contrast, Solid’s pod structure allows data owners to not only
decentralize their data, but also allows them to fully control it.

Decentralized web applications can obtain any data from the web with the
help of semantic web technologies and thus use data in a decentralized manner.
Such web applications therefore no longer store their users’ personal data in a
data store controlled by the application, but for example in a Solid pod or in
Solid data spaces [11]. However, data storage in decentralized web applications
is not fully decentralized, since application-internal data are also kept internal
with such a decentralization. In addition, correctly implemented caches in a
decentralized web application are required for technically smooth data access to
decentralized data in order to ensure fast response times in practice.

As discussed in the position paper by Siegert and Gaedke [14], integrating
external data storage creates a significant challenge for decentralized web ap-
plications, since user experience could be negatively affected by malicious or
harmful data. Classic web applications offer a trustworthy user experience by
homogenizing data based on the data model used and reusing this collected
data later accordingly. The data comes either from sources known to the appli-
cation or from user input, whereby this input is validated for security reasons
[9]. With decentralized web applications, however, the web application no longer
has complete control over the data storage. For example, data once stored on a
decentralized Solid pod can be changed without the knowledge or control of a
web application before it is read out later. External data can also be malicious
or harmful, but should neither be neglected by default, nor used unfiltered in a
decentralized web application. Integration of untrustworthy data can result in
a deterioration of the user experience. To ensure a trustworthy user experience
in decentralized web applications, the trustworthiness of external data must be
taken into account. However, external data cannot be continuously monitored
on changes by the web application. In addition, the amount of data in the web is
constantly growing [16], which makes it impossible to moderate the integration
of external data by experts [1]. Thus, decentralized web applications require a

1 https://digital-strategy.ec.europa.eu/en/policies/next-generation-

internet-initiative
2 https://gaia-x.eu/
3 Regulation (EU) 2016/679 of the European Parliament and of the Council
4 https://joinmastodon.org/

https://digital-strategy.ec.europa.eu/en/policies/next-generation-internet-initiative
https://digital-strategy.ec.europa.eu/en/policies/next-generation-internet-initiative
https://gaia-x.eu/
https://joinmastodon.org/


Trusting Decentralized Web Data in a Solid-based Social Network 3

trust awareness component [14], which assesses the extent to which the data is
trustworthy enough to be used.

A trust awareness component is yet not existing for decentralized web ap-
plications. Based on related work [17], trust awareness is calculated on different
information about the data, e.g. its origin or reputation, depending on the trust
model used. Based on the results of these calculations, a trust-based decision
is made about the extent to which the data is trustworthy enough to be used.
However, it is currently unclear how the interfaces of a trust awareness compo-
nent are structured, what typical processes in a web application including such
a component look like and how often the component is integrated into the ap-
plication’s workflow. To enable decentralized web applications being trust aware
and to address these questions, we introduce in this paper a trust aware decen-
tralized web application. The use case for our application is a social network
where a large number of user pods and additional data are merged into a typical
social network platform. Furthermore, we evaluate the usability of the prototype
and the impact of the trust awareness component on the usability to draw con-
clusions on how such a component can impact the user experience to be more
trustworthy. The contributions of our paper are as follows:

1. We present a framework named TrADS, a Trust-AwareDecentralized Social
network, which has a Solid-based decentralized data layer.

2. We demonstrate its feasibility with a publicly accessible prototype5 whose
code is also accessible6.

3. We evaluate the usability of our prototype and the impact of the trust aware-
ness component on usability with a 53-participants large user study.

The remainder of the paper begins in section 2 with a qualitative discussion
of related work. In section 3, we present our framework for a trust-aware, de-
centralized, and Solid-based social network called TrADS, along with insights
into its prototypical implementation and its qualitative comparison with related
work. We detail the 53-participant user study on the usability of TrADS and the
impact of the trust awareness component on the usability in section 4, and draw
conclusions in section 5.

2 Related Work

Several decentralized social networks exist today already. To systematically ana-
lyze and assess them, we identify two sets of requirements, one motivated by the
end-users of the social network and the other motivated by the social network’s
operators. The five end-user requirements are: trust awareness, data control,
resistance to censorship, networkability, and independence. The three operator
requirements are: adaptability, manageability, and scalability. The decentralized
social networks are selected on the basis of the technology they use in order to

5 demo: https://vsr.informatik.tu-chemnitz.de/projects/2024/trads/
6 code: https://zenodo.org/records/10641771

https://vsr.informatik.tu-chemnitz.de/projects/2024/trads/
https://zenodo.org/records/10641771


4 Siegert et al.

Table 1: Qualitative comparison between decentralized social networks

Decentralized Social Network T D R N I A M S

Mastodon 4

PeerTube 8

diaspora* 7

Pixelfed 9

Secure Scuttlebutt 10

Sone 11

Peergos 12

SteemIt 14

Minds 15

Movim 16

twtxt 17

nostr 19

TrADS

T, D, R, N, I, A, M, S respectively stand for: Trust awareness,
Data control, Resistance to censorship, Networkability, Independence,

Adaptability, Manageability, and Scalability.

cover the widest possible range of different decentralized social network technolo-
gies. All requirements are mapped onto a four-level assessment scheme: not
satisfied, partially satisfied, mostly satisfied, fully satisfied. All results
of the qualitative comparison are also summarized in table 1, which we detail in
the following of this section. In addition, we list the requirement assessment of
TrADS, our own solution, which is described in detail in subsection 3.3.

Currently, the most successful approach to decentralized social networks are
federated networks building the Fediverse [6], being a combination of individual
instances that communicate with each other. Instances can be operated privately
or publicly and can be used by a variable number of users, who are free to decide
which instance they use. By distributing the network across a large number of
independently operating instances, it is ensured that nobody has sole control
over the social network. The best-known representatives of federated networks
include diaspora* 7, PeerTube8, PixelFeed9 and Mastodon4, which is one of the
most successful federated networks with 1.8 million active users in 2022 [10].

In a peer-to-peer (P2P) model, all participants (nodes) have equal rights and
can both provide and receive services. In this paper, we consider three P2P-based
decentralized social network approaches: (1) Secure Scuttlebutt10, (2) Sone11,
and (3) Peergos12. Users of Secure Scuttlebutt operate their own node on which,

7 https://diasporafoundation.org/
8 https://joinpeertube.org/
9 https://pixelfed.org/

10 https://www.scuttlebutt.nz/
11 https://github.com/Bombe/Sone
12 https://peergos.org/

https://diasporafoundation.org/
https://joinpeertube.org/
https://pixelfed.org/
https://www.scuttlebutt.nz/
https://github.com/Bombe/Sone
https://peergos.org/


Trusting Decentralized Web Data in a Solid-based Social Network 5

in addition to their own data, the data of all friends and the data of their
friends are stored. Communication beyond those is achieved through the use of
so-called pubs (publicly accessible nodes). In Sone, however, users operate their
own Freenet13 access point nodes. Data is encrypted and stored on different
nodes, whereby the storage location is determined by a routing algorithm over
which users have no direct influence. Users of Peergos, in turn, need access to a
node operated by themselves or by others on which they can store their data.
They then have the option of following other users, giving them the opportunity
to write messages and share data unilaterally. If the data is only stored on a
self-operated node, the user may retains full control.

Well-known representatives of blockchain-based decentralized social networks
are SteemIt14 and Minds15 [4]. The blockchain serves as a record of all actions
in the decentralized network. Access to content, such as images or texts, is often
realized via a P2P-based data distribution protocol called IPFS [12], as otherwise
the required storage capacity of the blockchain would be too large. As the blocks
in the chain cannot be subsequently modified or deleted, the use of blockchain
results in unresolved problems in the context of social networks [4] like scalability,
content visibility and decentralization of content.

Movim16 is an XMPP-based decentralized social network. Using an abstrac-
tion layer, a Movim instance provides an XMPP client that offers the function-
alities of a social network. Such an instance can be used by any number of users,
regardless of the XMPP servers they use. All personal content is stored on the
user’s XMPP server allowing users to switch instance at will. The used Movim
instance keeps a copy of the content as a cache and makes the created public
content available via HTTP. twtxt17 is a very minimalistic microblogging sys-
tem approach. Each user makes a twtxt file publicly available via a URL, which
contains the user’s posts line by line with the URL of this file serving as the
identity. A twtxt client retrieves the files of all followed users, similar to an RSS
feed reader, and creates a feed from them. Yarn.social18 is a decentralized social
network based on twtxt files, providing optional extensions to support hashtags
and metadata for social networks. Notes and Other Stuff Transmitted by Relay
(nostr)19 is a protocol for decentralized social networks based on a relay system.
The aim is to create a global independent and censorship-resistant social net-
work consisting of a large number of relays with which users communicate using
a client. The relays accept user content and pass it on when it is requested by
other users. To publish content, a user, who is identified by a publicly known
key, signs the content and sends it to a selection of relays. A nostr client then
creates a feed for a user, which consists of all publications by other users that

13 https://www.hyphanet.org/
14 https://steemit.com/
15 https://www.minds.com/
16 https://movim.eu/
17 https://twtxt.readthedocs.io/en/latest/user/intro.html
18 https://yarn.social/
19 https://nostr.com/

https://www.hyphanet.org/
https://steemit.com/
https://www.minds.com/
https://movim.eu/
https://twtxt.readthedocs.io/en/latest/user/intro.html
https://yarn.social/
https://nostr.com/


6 Siegert et al.

are followed by the client’s user. nostr is completely call-based, so there is no
way to inform other users about interactions, and once a user has sent data to
a relay, they lose all control over it, which makes it impossible to delete any.

While trust awareness on decentralized data is not supported in any of the
approaches mentioned, the Fediverse applications at least consider moderation
of the data per instance. However, this moderation in the Fediverse cannot be
fully automated and is a known and unsolved problem [1], especially for larger
instances. Data control is mostly supported, if at all, by its own independent
hosting, which has the disadvantage of hosting effort. With approaches such as
Movim16 or twtxt17, the effort is less, but they still require their own hosting
and, like twtxt, sometimes have no access control. Due to the independent distri-
bution of data storage, some of the approaches mentioned are already resistant
to censorship. However, many approaches are also limited in their resilience,
as individual instances can restrict communication with others. In particular,
the Fediverse performs very well in terms of networkability through common
data exchange protocols such as ActivityPub [8]. Protocols such as IPFS [12]
also support the exchange of data to a high degree, but the using approaches
lack networkability due to their blockchain architecture. All of the above ap-
proaches give users a choice of instances, which partially supports the idea of
independence. However, the better solution is when data and/or identities are
not bound to instances, making approaches completely independent of third par-
ties. Adaptability is a given in some approaches but is limited in approaches such
as Movim16, twtxt17 and nostr19, and it is not given at all in blockchain-based
decentralized social networks. While most approaches already perform well in
terms of manageability and scalability, the Fediverse is poor in terms of man-
ageability [1], and also has some disadvantages in terms of scalability. These are
due to the caching principle in each instance, which results in overlinear growth
of the entire system as a network grows. The blockchain-based approaches are
even worse than the Fediverse in terms of scalability, as they face the problem
of scalable blockchain technology [4].

3 TrADS

To improve the related work and to especially make social networks trust-aware
by integrating a trust awareness component [14], we present in this section
TrADS, a Trust Aware Decentralized Social network. We first explain details on
TrADS architecture including its typical processes, and then proceed to present
details about its prototype including details on the front-end. To be able to
list TrADS in the table 1 of related work, we conclude the section with a brief
analysis of TrADS using the requirements mentioned in section 2.

3.1 Architecture

The architecture of such a social network is significantly influenced by the tech-
nology used for decentralized storage and data exchange. In order to maintain



Trusting Decentralized Web Data in a Solid-based Social Network 7

the networkability of the Fediverse, the separation of data and instance as in
Movim16, and in particular a high level of data control similar to that in Peer-
gos12, we use Solid [13] in our approach. The Solid pods allow end users to
control their own data through the web standards used and to freely transfer
the data to other platforms, thus minimizing the dependency of end users on the
actual instance of the social network. The high level of data control of the end
user in Solid and the web standards used also enable a high degree of adaptabil-
ity, as with P2P-based approaches or the Fediverse. Similar to Movim16 and the
blockchain approaches, Solid promotes the independence of the instances, but in
contrast, data control is not restricted by a lack of access control.

TrADS Instance

Trust AwarenessController

Solid Client
Solid Pods
Solid Pods
Solid Pods Model Database

Web Browser

1

3

2

4

Fig. 1: A TrADS Instance Architecture

A TrADS instance is independent of a central architecture and therefore resis-
tant to censorship by others. The UML component diagram in figure 1 provides
an overview of the architecture of a TrADS instance. TrADS is a web applica-
tion based on the Model-View-Controller (MVC) pattern [7] and therefore has
the classic components Controller (1) and Model (4). The View is not shown
separately for simplification and is used in the end user’s web browser in par-
ticular. The model has access to a database component, which provides both a
database for application-internal data and a cache, which is used for the techni-
cal realization of a fast response time for user requests. The decentralized nature
of TrADS therefore does not slow down the interaction between the user and
the TrADS instance. Apart from the classic database connection of the model,
it has access to a Solid Client (3), which enables TrADS to access Solid pods.
The newly introduced Trust Awareness component (2) is used in TrADS by the
model component to neither blindly accept nor directly reject external content
originating from the Solid pods. This means that externally sourced content is
evaluated in a trust aware manner before it is displayed to the user. This type
of integration as a local component on the individual instance rules out manip-
ulation by third parties and thus makes the TrADS instance independent about
whether decentralized data is trustworthy enough. This also makes it possible to
display the assessments and to allow future assessments to be influenced by the
user. The trust awareness result can vary from instance to instance, whether due



8 Siegert et al.

to a different data situation, the use of a different trust model in the component
or different preferences of the instance users and operators.

To ensure that users can assume the integrity and origin of the displayed
data despite the decentralized storage, TrADS uses checksums for referencing
and offers optional content signing. For example, when commenting on a post
and thus referencing the post, a user cannot be sure that the post will still
be available (unchanged) later. The use of checksums when referencing content
ensures that it is possible to check later whether the content that can now
be accessed is identical to the content referenced in the initial post. For this
purpose, the checksum associated with the content is also specified together
with the reference to the content. Users can thus check whether the referenced
content still exists in exactly this form. Otherwise, the content was referenced
incorrectly or the referenced content has since been manipulated. The optional
signing of content makes it possible to ensure that only the displayed content
creator has published the currently saved content if a unique public key can be
assigned to him. If a post creator later decides to remove a post or restrict access
to it, partial discussions could exist in TrADS as the replies to the post content
are in turn controlled by their creators.

Web Browser

T
rA

D
S
 I

n
st

an
ce Get Feed

Create
Feed

from Cache

2

Send Feed

Filter for
Changes

5
Trust

Awareness

6 Update
Feed

in Cache

7
Query Pod

Data

43

Instance Cache

1

Solid Pods

for each relevant Pod

Fig. 2: Getting a User’s Feed in TrADS

Trust Awareness is always requested as soon as new data from any Solid pod is
included in a TrADS instance. For technical reasons, such inclusion often results
in caching at the instance. An example of this is shown in figure 2 using the query
of a user’s feed. The process begins with the user’s request to retrieve their feed
(1). To ensure that the request can be answered as quickly as possible, a quick
initial response is sent to the user after the request (2) and a query is sent to
all relevant Solid pods to update the data (3). The fast response to the user is
made possible by querying the instance cache and thus shortens the response



Trusting Decentralized Web Data in a Solid-based Social Network 9

time for the user instead of awaiting all included pods. The data update sub-
process is executed for each relevant pod and begins with the data query (4). The
retrieved data is then filtered for changes (5) to determine whether and what
should be updated in the instance cache. If an update of the cache is necessary,
the trust awareness component (6) will determine the extent to which the data is
trustworthy before the update is executed (7). TrADS does not detail anything
about the metrics on the basis of which the trust-aware decision is made. In this
paper, the component of trust awareness is intentionally only implemented as a
prototype so that the architectural integration and its effects in particular can
be both presented and examined. Frameworks such as ConTED [15] or other
trust models migrated to the decentralized web [17] can be used to implement
the trust awareness component use case independently.

3.2 Prototype

A demo5 of TrADS as well as the implementation code6 are available online.
TrADS offers users functions that they are already familiar with from other
social networks. When called up, the feed is displayed, which consists of posts
and reactions from related pods. These are either friends or any other social
network account the user follows. Figure 3a shows the structure of posts in the
TrADS feed, as well as the menu. For a post, the name of the author, their
profile picture, the date the post was published and the number of likes received
is displayed together with typical options to share and respond to it. Additional
functions in TrADS are typical of social networks, such as adding new friends
or following accounts, as well as viewing profiles and editing your own profile.
Furthermore, a chat functionality is also implemented in TrADS.

A trust rating of the individual posts is displayed in the feed. A colored circle
next to the user’s name indicates the trustworthiness of the respective post.
The meaning of the color is explained with the help of a tooltip as soon user
hoovers over the circle. The colors of the circle stand thereby for: untrustworthy,
very likely untrustworthy, maybe untrustworthy, neutral, trustworthy,
very trustworthy.
Posts that are classified as untrustworthy by TrADS are hidden in the feed.

However, an indication appears at the location of the post writing that the post
has been hidden from the feed. Users have the option to click on this indication to
view the distrusted post with a corresponding warning. Figure 3b shows how this
post is displayed after the user decides to view it despite poor trustworthiness.

As a prototypical implementation, TrADS does not use a fully-fledged trust
model in its trust awareness, but simple functions that serve as placeholders
for a future implementation. Trust values are initialized for posts by retrieving
the author’s trust value from the cache and modifying it with a random-based
variance. The trust value of the authors is initialized with a neutral value and
also provided with a random variance for scattering. Likes of a post increase the
trust value of the post if the trust value of the like creator is greater than that
of the post. Sent chat messages also lead to an increase in the trust value of the
recipient of the message.



10 Siegert et al.

(a) Examplary TrADS Feed, including two
posts

(b) Expanded untrustworthiness warning,
showing the post within a TrADS feed

Fig. 3: TrADS Front-end Examples

The cache enables the trust awareness to use stored content as the basis for
the trust evaluation. In addition, the evaluation of individual content can also
trigger a change in the evaluation of other content already stored in the cache. A
strongly negative evaluation of a content or author does not lead to its rejection
in TrADS, but only to the corresponding indication and hiding from the feed.
This gives users control over the content they consume, and additionally TrADS’
trust awareness can make use of such negatively rated content as a good source
of information for later trust evaluations.

3.3 TrADS Qualitative Comparison

TrADS is a very good approach for a decentralized social network with regard
to the requirements mentioned in section 2. The Trust awareness introduction
into decentralized web applications is the main contribution of the paper. It is re-
alized by TrADS as a component that assesses the trustworthiness of all external
data from Solid pods. Even though TrADS does not implement a fully functional
trust model, the architecture enables the necessary integration of further work.
Most importantly, TrADS is the first to use trust awareness for external decen-
tralized data. The use of Solid provides a high level of data control in TrADS.



Trusting Decentralized Web Data in a Solid-based Social Network 11

This includes control of data access with the ability to revoke permission, as well
as control over where the data is stored. Thanks to the free choice of instances,
the ability to self-host an instance and direct user access to their pods, TrADS
offers complete resistance to censorship. Also, networkability, indepen-
dence, customizability and manageability are all met by using the instance
concept, decentralized storage of data in Solid pods and web standards used in
Solid, such as WebID. With projects such as ActivityPods20, it is even possible
to connect to related approaches from the Fediverse with TrADS. However, scal-
ability is only mostly satisfied, as an instance scales linearly, but the network of
instances scales quadratically in the worst case due to the caching of a TrADS
instance.

4 User Study

To be able to draw conclusions from the existing prototype of TrADS about the
influence of the trust awareness component on the user experience, we conducted
a user study on the front-end of TrADS. In this section, we present the design
and process of the study and then discuss its results and the implications of the
user study. All data of the evaluation is accessible online21, including the raw
survey data as well as all numbers we discuss in the results subsection.

4.1 Procedure

The user study was conducted in German using a tool that made it possible to
embed TrADS directly into the survey using IFrames. After a welcome text and
the collection of general information about the participant, each participant was
given time to explore TrADS independently. Each participant was then asked to
first read the latest post from a local newspaper, then like a post from a specific
account and finally write their own post. In this way, it was initiated that the
participants interacted with TrADS. Although it was not checked to what extent
the participants completed the tasks.

After the interaction with TrADS, the usability of the demo implementa-
tion was determined using the System Usability Score (SUS) [2]. This uses 10
statements, which are evaluated by the user on a 5-point Likert scale and then
systematically combined to form a score. In order to look specifically at the use
of the Trust Awareness component, 4 questions are asked as to whether and to
what extent the participant was aware of Trust Awareness in the front-end, al-
ways, sometimes or not at all. However, 2 of these questions are only displayed if
the participant indicated more than not at all in the previous always-indicating
question. For example, the participant is only asked whether the different colors
of the trust circles are perceived if they have indicated that they always or some-
times see the circles. The participant then rated 9 statements on the integration

20 https://activitypods.org/
21 data available at https://zenodo.org/records/10641724

https://activitypods.org/
https://zenodo.org/records/10641724


12 Siegert et al.

of trust awareness into a social network, again on a 5-point Likert scale. In this
way, the general acceptance of a trust awareness component can be examined.
The survey ends with 7 statements on the importance of data protection in social
networks, which the participant again rates on a 5-point Likert scale.

For the survey, TrADS was put into demo mode to ensure that no persistent
changes can be made to the instance and that all users are shown an identical
version. To this end, user management is deactivated, preventing the addition
and deletion of users in the cache of the TrADS instance. Interactions, such as
creating or liking posts, are only stored in the cache and not in the corresponding
Solid pods. All new content stored in the cache is automatically deleted every
30 minutes. Furthermore, personal posts are not displayed in the feed, as the
participants have no connection to the demo user.

To bring the social network to life for the demo, 25 pods are created on
a separate Solid pod provider for user representation. There are 5 profiles of
companies that fill the network with news. News articles only contain links to
the corresponding articles, which can be read by means of a preview. The topics
of the articles were chosen from the areas of entertainment, sport and animals in
order to avoid socially controversial topics as far as possible. Three other users
are used in the demo for fraudulent content, which should not be trusted and
should therefore be visualized accordingly by the front-end. The remaining 17
users are private users of the network who have been assigned different trust
values after creating posts in order to have different users.

4.2 Results

Only the 53 fully completed responses were taken into account for the evalu-
ation21, of which 26 were female, 19 male and 8 without gender information.
According to the participants, the age distribution was as follows: under 18: 1;
18 to 24: 4; 25 to 34: 9; 35 to 50: 27; 51 to 70: 11 and one participant over 70.
While 40 people stated that they use social networks several times a week, one
participant stated that they use them weekly, three use them less than once a
week and two participants do not use them at all.

27 of the 53 participants stated that they had noticed the circles indicating
trustworthiness next to the names of the authors of the posts. More than half of
this group of participants noticed that these dots had different colors. 26 of the
participants stated that they had noticed the indications on untrustworthy feed
removals, yet only two participants tried to click on these. In total, 36 of the 53
participants noticed at least one of the two trust awareness front-end elements,
of which 17 even noticed both elements. However, there were also 17 participants
who did not notice either of the two trust awareness front-end elements.

Figure 4 shows the SUS distribution of the survey as a boxplot (1). The
figure also contains the boxplots for two different user groups. The boxplot (2)
represents the group of users who noticed at least one of the two trust awareness
front-end elements, while the boxplot (3) represents the group of users who did
not notice any of these elements. The SUS of the survey have an expected value
of µ = 68 with a standard deviation of σ = 17.5. According to SUS, such an



Trusting Decentralized Web Data in a Solid-based Social Network 13

Fig. 4: SUS Distribution of (1) all participants (2) participants noticed in mini-
mum one trust awareness front-end element (3) participants did not notice any
trust awareness front-end element

expected value is to be classified as an average score. Using the Shapiro-Wilk
test, we determined a p-value of 0.234 for the survey’s SUS data points. As
the p-value is below the significance level of α = 0.05, a normal distribution of
survey’s SUS can be assumed.

To investigate the extent to which the participants’ perception of trust aware-
ness of the application influences the usability of the system, we examined the
box plots (2) and (3) in a two-sample t-test. Based on a significance level of
α = 0.05 and 51 degrees of freedom, the critical value for our t-test is 2.01. This
results with (95%−CI[1.06, 21.23]) in t(51) = 2.22, p = 0.03. Thus, a significant
difference exists in the SUS distribution of end users noticing trust awareness
front end elements and those who did not. The significant differences in the
usability scores indicate an improvement in the user experience as a result of
trust awareness. However, it should be noted that the groups were not randomly
selected, which limits the reliability of the t-test.

The reaminding survey statements provide further insights on 5-point Likert
scales with values from 1 to 5: The presentation of an assessment of the trust
awareness of the content was rated as useful (µ = 4.25, σ = 0.75) and helpful
(µ = 4.11, σ = 0.86). It was further agreed (µ = 3.89, σ = 0.92), that a social
network in which this additional information is provided is more likely to be
used than another. The results of the statements on dealing with untrustworthy
posts show a greater discussion among the participants with 3 < µ < 4 and
σ > 1. The protection of personal data (µ = 3.3, σ = 0.88) and the knowledge
of what data is stored about oneself (µ = 3.13, σ = 0.99) is rather important for
our participants. Additionally, most generally do not know where their personal
data is stored (µ = 2.4, σ = 1.15) or who has access to it (µ = 2.45, σ = 1.19).



14 Siegert et al.

5 Conclusion

In this paper, we present a trust awareness framework called TrADS for decen-
tralized social networks. TrADS leverages the MVC pattern [7] of web appli-
cations to integrate external data from Solid pods [13] into decentralized web
applications in a trust aware manner. We evaluate the proposed trust-aware de-
centralized social network TrADS in terms of usability and transparency with
53 end users in an empirical study. The results indicate that the trust awareness
component in TrADS can support end users in their trustworthy user experience.
Furthermore, user study participants agree that a social network improves if it
provides information on the trustworthiness of data. The results were less clear
when it came to dealing with content that was classified as untrustworthy, in-
cluding opposing opinions. Contradictory results were obtained from the survey
on participants’ attitudes towards the handling of their data on social networks.
On the one hand, privacy and data control is important to the participants, but
on the other, the majority of them stated that they do not know what happens
to their data. The qualitative comparison based on 8 requirements of related
work of decentralized social networks with TrADS shows that the use of Solid
and its web standards makes TrADS an above-average solution. Solid combines
the advantages of other approaches such as the Fediverse, blockchain or peer-
to-peer (P2P) with regard to the requirements mentioned. Only the scalability
of P2P approaches is slightly better with regard to all instances of a decentral-
ized social network. In particular, however, TrADS introduces trust awareness,
which is not present in any of the existent approaches. The Fediverse already
recognizes the problems of malicious or harmful data, but only solves this with
manual moderation, which leads subsequent problems in larger networks [1].

In terms of future work, we suggest further research to determine the gen-
eralizability of this work. This includes the back-end use of the trust awareness
component of decentralized web applications, as well as the extent to which the
results of the component are used in the front-end to improve the user experience.
Further targeted investigations are required for the generalization of trust aware-
ness functionality in decentralized web applications. Trust awareness should not
have to be developed by the developers themselves for each application or set
up at great expense. It will only be widely used in many web applications if
the set-up effort is limited, e.g. similar to the effort required today to deliver
a website with end-to-end encryption via TLS. The use case of social networks
used in this paper is a special one in terms of data access by end users, as they
create content themselves, which is then used by others for interaction. In other
web applications, end users are often only consumers of a service. The integra-
tion of external data is then often motivated by suppliers of resources for the
service of the web application. Such a change in the use case can also change the
impact on the user experience than TrADS does in a very transparent way with
the visible front-end elements without removing content fully. Such a change to
the use case can, for example, result in the application having to intervene more
strongly than TrADS does in the case of untrustworthy data.



Trusting Decentralized Web Data in a Solid-based Social Network 15

References

1. Anaobi, I.H., Raman, A., Castro, I., et al.: Will Admins Cope? Decentralized
Moderation in the Fediverse. In: Proceedings of WWW ’23. p. 3109–3120 (2023).
https://doi.org/10.1145/3543507.3583487

2. Brooke, J.: SUS: A ’Quick and Dirty’ Usability Scale. Usability evaluation in in-
dustry 189(3), 189–194 (1996)

3. Couture, S., Toupin, S.: What does the notion of “sovereignty” mean when
referring to the digital? New Media & Society 21(10), 2305–2322 (2019).
https://doi.org/10.1177/1461444819865984

4. Guidi, B.: When Blockchain meets Online Social Networks. Pervasive and Mobile
Computing 62, 101131 (2020). https://doi.org/10.1016/j.pmcj.2020.101131

5. Ibáñez, L.D., Simperl, E., Gandon, F., Story, H.: Redecentralizing the web
with distributed ledgers. IEEE Intelligent Systems 32(1), 92–95 (jan 2017).
https://doi.org/10.1109/MIS.2017.18

6. La Cava, L., Greco, S., Tagarelli, A.: Understanding the growth of the Fediverse
through the lens of Mastodon. Applied Network Science 6(1), 64 (Sep 2021).
https://doi.org/10.1007/s41109-021-00392-5

7. Leff, A., Rayfield, J.T.: Web-application development using the
Model/View/Controller design pattern. In: Proceedings Fifth IEEE EDOC.
pp. 118–127 (2001). https://doi.org/10.1109/EDOC.2001.950428

8. Lemmer-Webber, C., Tallon, J., Shepherd, E., Guy, A., Prodromou, E.: Activity-
pub. first edition of a recommendation, W3C (Jan 2018), https://www.w3.org/
TR/2018/REC-activitypub-20180123/

9. Li, X., Xue, Y.: A survey on server-side approaches to securing web applications.
ACM Comput. Surv. 46(4) (mar 2014). https://doi.org/10.1145/2541315

10. Mastodon gGmbH: Mastodon Annual Report 2022 (2023), https:

//joinmastodon.org/reports/Mastodon%20Annual%20Report%202022.pdf

11. Meckler, S., Dorsch, R., Henselmann, D., Harth, A.: The Web and Linked Data as
a Solid Foundation for Dataspaces. In: Companion Proceedings of WWW ’23. p.
1440–1446 (2023). https://doi.org/10.1145/3543873.3587616

12. Protocol Labs: IPFS Standards, https://specs.ipfs.tech/
13. Sambra, A.V., Mansour, E., Hawke, S., et al.: Solid: A Platform for Decentral-

ized Social Applications Based on Linked Data. Tech. rep., MIT CSAIL & Qatar
Computing Research Institute (2016), http://emansour.com/research/lusail/
solid_protocols.pdf

14. Siegert, V., Gaedke, M.: Trust Awareness for Redecentralized Web Applications
(Position Paper). In: Joint Proceedings of ESWC 2023 Workshops and Tutorials
(2023), https://ceur-ws.org/Vol-3443/ESWC_2023_TrusDeKW_paper_7938.pdf

15. Siegert, V., Kirchhoff, A., Gaedke, M.: ConTED: Towards Content Trust for
the Decentralized Web. In: Proceedings of WI-IAT 2022. pp. 604–611 (2022).
https://doi.org/10.1109/WI-IAT55865.2022.00095

16. Taylor, P.: Volume of Data/Information Created, Captured, Copied, and Con-
sumed Worldwide from 2010 to 2020, with Forecasts from 2021 to 2025 (nov 2023),
https://www.statista.com/statistics/871513/worldwide-data-created/

17. Yu, H., Shen, Z., Leung, C., Miao, C., Lesser, V.R.: A Survey of
Multi-Agent Trust Management Systems. IEEE Access 1, 35–50 (2013).
https://doi.org/10.1109/ACCESS.2013.2259892

https://doi.org/10.1145/3543507.3583487
https://doi.org/10.1177/1461444819865984
https://doi.org/10.1016/j.pmcj.2020.101131
https://doi.org/10.1109/MIS.2017.18
https://doi.org/10.1007/s41109-021-00392-5
https://doi.org/10.1109/EDOC.2001.950428
https://www.w3.org/TR/2018/REC-activitypub-20180123/
https://www.w3.org/TR/2018/REC-activitypub-20180123/
https://doi.org/10.1145/2541315
https://joinmastodon.org/reports/Mastodon%20Annual%20Report%202022.pdf
https://joinmastodon.org/reports/Mastodon%20Annual%20Report%202022.pdf
https://doi.org/10.1145/3543873.3587616
https://specs.ipfs.tech/
http://emansour.com/research/lusail/solid_protocols.pdf
http://emansour.com/research/lusail/solid_protocols.pdf
https://ceur-ws.org/Vol-3443/ESWC_2023_TrusDeKW_paper_7938.pdf
https://doi.org/10.1109/WI-IAT55865.2022.00095
https://www.statista.com/statistics/871513/worldwide-data-created/
https://doi.org/10.1109/ACCESS.2013.2259892

	Trusting Decentralized Web Data in a Solid-based Social Network

