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Abstract

Application logic is inherently distributed between client and server due 
to the fundamental Client/Server architecture of the Web. The individual 
distribution is specified a t d esign t ime a nd r emains u nchanged s table, pre-
venting individual load distribution between clients and server at runtime. 
Dynamic code mobility at runtime, in contrast, allows to balance the needs 
of users, through increased responsiveness, and software providers, through 
better resource usage and cost reductions. Enabled by WebAssembly, the 
Web ecosystem recently provides the technological foundation for relocating 
code units during runtime. However, leveraging these capabilities to enhance 
web applications with dynamic code migration presents challenges for web 
engineers. In response, we propose an innovative distributed Client/Server 
software architecture for web applications. This architecture facilitates the 
dynamic migration of code at runtime, and addresses the technical challenges 
like dependency management, control and data flow distribution, communi-
cation, and interfaces. This novel software architecture serves as a reference 
for web engineers aiming to enrich their web applications with dynamic code 
mobility. Additionally, it contributes to the ongoing reevaluation of the Web 
ecosystem in light of the widespread adoption and standardization of Web-
Assembly across major browsers. Through experimentation in four scenarios, 
we demonstrate the feasibility of implementing this architecture, its negligi-
ble impact on performance and the optimization potential for individual code 
distributions across client and server.
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1 Introduction

Contemporary Web applications are engineered based on a well-established
stack of W3C-standardized technologies. The foundational Client/Server ar-
chitecture of the Web inherently prompts software architects to consider the
distribution of application logic between the two sides. The available de-
sign space is extensive, encompassing configurations that lean towards thin
clients, with predominant execution of application logic on the server side,
e.g. utilizing frameworks like Django, ExpressJS, Laravel, or Rails. At the
other end of the spectrum, there are architectures in which a more substan-
tial share of computations are ran on the client side in the browser, while
the server offers only a simple interface to the underlying data layer, e.g.
when developing using client-side frameworks such as React, Vue, Angular,
or Svelte, coupled with extensive AJAX communication.

Determining an optimal allocation of application logic between client and
server for a given web application is complex as it is influenced by variety of
factors and project-specific requirements. What is more, the code distribution
manually crafted by Web Engineers is static and fixed at design time. The
assignment of code units to either the client or server is defined a priori and
remains unmodifiable at runtime. This static design time code distribution
curbs the capacity to respond to situational events and conditions dynami-
cally. Particularly in view of the ever-increasing heterogeneity of user devices
on the client side, this rigidity undermines the ability to support balancing
responsiveness/usability requirements by users, with resource consumption
and financial considerations on the part of software providers.

While deciding the right distribution for a given web application depends
on various factors and individual requirements, the distribution is static and
fixed at design time. The mapping of units of code to either the client or
server side is decided a priori and cannot be changed later dynamically at
runtime, allowing to react to situational events and conditions. Especially in
light of the ever-increasing heterogeneity of user devices on the client side,
this static design time decision does not support balancing responsiveness/us-
ability requirements by users, resource usage, and economic considerations
by the software providers.

The emergence of server-side JavaScript through NodeJS, coupled with
the ability to execute server-side languages on the client side via Web-
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Assembly [21], forges more homogenous client- and server-side platforms.
This paves the way to achieve the vision of code mobility [1] in the Web
at runtime. The resulting advantages include a dynamic and individual load
distribution between clients and server, along with potential cost savings for
software providers.

This article aims at devising a novel distributed Client/Server software
architecture for web applications, which enables the dynamic reallocation of
code execution at runtime. We address the technical challenges encompassing
dependency management and compilation, control and data flow distribution,
as well as the necessary communication and interfaces, proposing resolutions
for each of them. The corresponding architecture, along with an infrastructure
supporting Web Engineers to create web applications with dynamic code mo-
bility, is both conceptualized and implemented, and subsequently subjected to
testing across various experimental scenarios. This article extends our initial
work on DCM presented at ICWE 2023 [10, 11], based on reviewers’ com-
ments and feedback throughout the conference, in particular in the following
areas:

1. We enhanced the dependency management and simplified code dis-
tribution configuration for developers through automatic fragment id
management and named fragments.

2. The DCM client-side infrastructure was extended to support Web En-
gineers to invoke mobile code units through automatic generation of
awaitable JavaScript wrappers.

3. The DCM server-side infrastructure was extended to support Web En-
gineers to integrate DCM through customization of communication
channel endpoints.

4. We extended experimentation for the fragment generation and compi-
lation steps with now 5 codebases and the new fragment generation
technique.

5. Additional experimentation to investigate the complete distribution
space from all-client to all-server with regard to execution time impact
was conducted.

6. We improved the experiment design to increase internal validity and
replicated the previous experiments with the revised DCM infrastructure
on updated hardware with significantly higher number of repetitions.

The remainder of this article is structured as follows: in section 2 we outline
our proposed solution architecture and the supporting infrastructure, section 3
positions our work against existing code mobility paradigms and approaches,
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in section 4 we evaluate the feasibility of the architecture in 3 scenarios and
show that the performance overhead is negligible, and section 5 concludes
the article with an outlook on directions for future work.

2 The DCM Architecture

In this section, we introduce our solution aimed at facilitating dynamic
code mobility between the client and server at runtime, utilizing W3C-
standardized Web technologies. Our proposed software architecture, the
DCM Architecture, empowers Web Engineers to integrate dynamic code
mobility capabilities into their web applications, emphasizing minimal inter-
ference with established development activities. An overview of the primary
components within the DCM Architecture and their interactions is depicted
in Figure 1. The DCM architecture incorporates a dynamic migration infras-
tructure (highlighted in blue) that can be embedded within a web application
(depicted in black), affording Web Engineers the means to manage code mo-
bility through straightforward configuration. The DCM approach addresses
three key challenges:

1. Specification and compilation of migratable code fragments for both the
client and server side,

2. Orchestration of execution and control flow for these fragments between
the client and server, and

3. Synchronization of fragment distribution information and redirection of
data flow at runtime.

The following subsections detail our solutions to these three challenges.

2.1 Generation and Compilation of Code Fragments

Within this subsection, we draft our concept of mobile code fragments, ex-
plain how Web Engineers can define these segments of the codebase to be
executable on both the client and server sides, discuss the necessary meta-
data and its semi-automatic extraction, as well as elaborate on the validation,
compilation, and deployment of executable modules derived from specified
code fragments.

2.1.1 Specification of Code Fragments
To enable Web Engineers to designate segments of a web application’s code-
base that can be dynamically relocated between the client and server during
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Figure 1 Main Components and Interactions of the DCM Architecture enabling Dynamic
Code Migration between Client and Server at Runtime. Supporting Infrastructure is High-
lighted in Blue, Automatically Generated Artifacts are Highlighted in Green.

runtime, we introduce the concept of Code Fragments. A code fragment
CF = (Di, L, T,M) encompasses the definition of its source document
Di ∈ C within the codebase C, its limits L = (α, ω) (line numbers α, ω ∈ N)
within Di, its type T ∈ {function, variable, typedefinition}, and the
migration-relevant metadata M . The limits can be expressed either through
code annotations within the source code itself or via separate numerical spec-
ifications. In DCM, the level of granularity for specifying executable code
fragments is at the function level, to achieve a balance between fine-grained
control (smaller reuse units than components/classes) and isolation/depen-
dency management (larger than sets of statements). Fragments for variables
and type definitions handle imports of functions but are not independently
executable.

Figure 2 illustrates the data model of a code fragment, combining infor-
mation provided by Web Engineers and information automatically derived
through static code analysis of the codebase. In addition to location and frag-
ment type information Di, L, T , Web Engineers define the intended initial
execution location (server or client), libraries employed, and referenced other
fragments. The automatically identified information encompasses the actual
source code as specified by the location information, imports from other
sources, package information, and structural details of functions/variables/-
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Figure 2 Code Fragments Data Model. Web Engineer provided information in blue, automat-
ically identified information in green.

type definitions such as function parameters. Fragment information for a web
application implementing DCM is configured in a single additional artifact
called code fragment description (CFD) in fig. 1. An excerpt of manually
specified portions of such a CFD is presented in listing 1.

Through Syntax Analysis most of the information required for the com-
pilation of code fragments can be automatically derived from the codebase.
This significantly reduces the required effort for the Web Engineer by reduc-
ing the need for manual specification. For this, DCM analyses the abstract
syntax tree (AST) which is created when parsing the code base, containing
tokens and their relations according to the grammar of the programming
language in use. Deriving the AST from a given source code is a language-
dependent step. The Web Engineer’s manual configurations in the CFD are
enriched with data about imports from other sources, package information,
and structure of functions/variables/type definitions gained through AST
traversal.

In previous experiments, we observed some difficulties to manage the
fragment IDs manually [10]. This is now addressed by using non-integer ex-
pressive fragment names as identifiers. The DCM infrastructure allows using
named identifiers also for managing the depdency lists of a fragment.

1 fragments :
2 . . .
3 - id : GetHash
4 runOn: c l i e n t
5 l o c a t i o n : name: { f i l e p a t h : s h a r e d / s h a r e d . go }
6 l i b s : [ c r y p t o / sha256 , e n c o d i n g / hex ]
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7 . . .
8 - id : Crea teEmployee
9 runOn: c l i e n t

10 dependsOn: [ GetHash ]
11 l o c a t i o n : { f i l e p a t h : s h a r e d / employee . go }
12 . . .

Listing 1 Sample excerpt of a Code Fragment Description

2.1.2 Compilation of Code Fragments
To facilitate the execution of code fragments on the server and client side as
defined by Web Engineers in the Code Fragment Description, these fragments
must be compiled for the respective target platform. The server-side compi-
lation target varies based on the specific language and platform, while the
client-side target is WebAssembly. Compiled artifacts on the server side are
treated as plugins, while those on the client side are treated as WebAssembly
modules. Both binary artifacts can be loaded dynamically in their execution
environments during runtime.

For building both the language-specific plugins and the WebAssembly
modules, the source code, on which the compiler is then invoked, is au-
tomatically generated from the codebase and metadata of each code frag-
ment. As the CFD partially comprises of user-provided information, a CFD

Validator assesses the structural integrity and completeness of the CFD.
Errors such as duplicate fragments or missing essential information are
reported, accompanied by debug information to assist Web Engineers in re-
solving them. Upon successful validation, automated code generation and
transformation take place. The generated code handles imports and depen-
dencies, rendering them as units of code that can be compiled independently.
This process considers metadata for all fragments as duplicate imports result-
ing from dependency chains necessitate resolution. The existing codebase
is modified to reroute invocations of migratable fragments to the Fragment

Executer. This permits execution of either server-side plugins or forward-
ing of control and data flow to the client-side DCM infrastructure, where
it is executed by corresponding the WebAssembly module. To improve de-
veloper experience over the initial /approach version [10], the infrastructure
now automatically generates JavaScript wrappers for all callable fragments
specified in the CFD. As shown in Listing 2 line 2, the Web Engineer can
import these wrappers in the client-side application code even though they
do not exist at that moment. The wrappers are implemented as awaitable
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JavaScript functions. The compilation automation then injects components
of the DCM infrastructure (e.g., Code Distributor in fig. 1). The adjusted
codebase is subsequently compiled for both server and client, and plugins and
WebAssembly modules (including JS glue code) are placed in the appropriate
directories to be available for server and client-side code distributor instances.
Specifically, WebAssembly modules must be deployed within the statically
served assets directory, alongside JavaScript and CSS files, for retrieval via
HTTP(S) on the client side.

1 // Import of generated JS Wrappers

2 import {V a l i d a t e C o u p o n I n p u t , Va l ida t eCoupon }
↪→ from ’./CodeDistributor/functions.js’ ;

3
4 //Invocation of JS Wrapper ValidateCoupon

5 # v a l i d a t e C o u p o n = async ( ) => {
6 t r y {
7 c o n s t v a l i d = await Val ida t eCoupon ( t h i s .

↪→ i n p u t . v a l u e )
8 } ca tch ( e r r ) {
9 // error handling omitted

10 }
11 // results processing omitted

12 }
Listing 2 Client-side invocation of a code fragment

2.2 Dynamic Migration of Code Fragment Execution

To enable dynamic changes in the execution location of code fragments
during runtime, the DCM architecture incorporates infrastructure to oversee
their life cycle, as well as the distribution of control and data flow. These
responsibilities are implemented by the Code Distributor components on
both the server and client side (see Figure 1). These components manage
loading, execution, and termination of plugins/WebAssembly modules, while
ensuring the transfer of incoming and outgoing data flows and events.

2.2.1 Code Distributor (Server)
The Code Distributor component can be either embedded within the
web application itself or exist as an external, stand-alone server process,
potentially on a different host. In contrast to approaches like HTML5
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Agents [20], the DCM architecture advocates direct embedding due to lower
resource requirements, and operational/maintenance demands, as well as
reduced communication complexity. Embedding entails adding the DCM li-
brary to the web application’s imports and configuring routes for the Code

Distributor within the application’s internal routing. These steps can be
automated through the codebase adjustments outlined in Section 2.1. The
Code Distributor validates incoming client requests and signals connec-
tion errors. For valid requests, it manages sessions through the Client

Registry. Client Registry and Fragment Registry together moni-
tor all code fragments and enable individual fragment distribution patterns
for each client. Both registries are populated based on the Web Engineer
configuring the CFD to specify available code fragments and their initial
execution locations. The distribution status of all fragments is synchro-
nized with each client’s Code Distributor, allowing updates in fragment
execution location to trigger control and data flow migration through the
Fragment Executer. For server-side execution, the Fragment Executer

loads and executes the corresponding compiled plugin fragment. Fragment
state is handled by the State Manager to enable restoration after migration.
This encompasses modified/initialized variables, loops, and time functions,
along with synchronized resource changes shared among other fragments. A
RESTful interface provided by the API Controller allows monitoring and
controlling the dynamic code mobility. The endpoint URL can be customized
as detailed in Section 2.3 for the WebSocket connection. The interface outputs
the invidual fragment distribution of a client and allows adjustment of this
distribution at runtime. Potentially, this API supports connecting automated
decision-making based on runtime metrics like load and network bandwidth
to optimize fragment distributions.

2.2.2 Code Distributor (Client)
The Fragment Executer and State Manager components handling exe-
cution and state management as detailed above are mirrored on the client-
side. In contrast to the server-side Code Distributor that has the same
programming language as the web application’s backend, its counterpart
on the client side is implemented in JavaScript and needs to be stati-
cally served through the application’s web assets. The Fragment Executer

manages loading, initialization, and invocation of fragments compiled as
WebAssembly modules, along with data conversions between JavaScript
and the backend language’S type system within the WebAssembly mod-
ules. Execution information is read from the Fragment Registry prior
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to each invocation, which synchronizes with the server-side counterpart.
Similar to offloading approaches such as MAUI [4] and ThinkAir [13], frag-
ments are initially executed locally. This state remains until updates are
received, enabling execution during connection establishment and initializa-
tion. Similarly, when connection between to the server side is lost, the DCM
infrastructure falls back to local execution at the client side. To execute a
fragment, a pool of WebWorkers1 is used.

2.3 Client/Server Synchronization and Data Flow Redirection

To maintain the bidirectional exchange of information necessary for syn-
chronizing fragments and distribution state, as well as to facilitate data flow
from and to fragments when their execution location changes, the DCM
code distributor components require a constant means communication. This
subsection outlines the communication channels and protocol. We employ
WebSockets for communication, which offers bidirectional connectivity be-
tween the client and server-side DCM infrastructure, and is more widely
supported by browsers than the new WebTransport W3C standard. The
updated DCM infrastructure now allows Web Engineers to customize the
endpoints used for the WebSocket channel. This improves integratability with
the existing code base of the web application, enabling to select the most
suitable URL for the application-internal routing of messages to the DCM
infrastructure. Along with the endpoint for the API Controller, the URL
can be specified in the DCM configuration and the infrastructure will perform
the necessary changes to register the routes with the web application during
the automatic code modifications described above. JSON is used as mes-
sage format within the WebSocket connections. The Connection Handler

components connect with each other via WebSockets during initialization.
Clients identify themselves via JSON Web Tokens (JWT) included in all
communications to enable the server to manage fragment distribution for
each client individually. Client-server communication is implemented via
JSON-encoded events exchanged over the WebSocket connection.

Section 2.3 presents the primary events within the DCM communication
protocol, serving two key purposes: a) exchanging information necessary
for fragment management and distribution state, and b) enabling data flow
redirection for fragments where the caller and callee are not on the same side.

1 cf. https://html.spec.whatwg.org/multipage/workers.html

https://html.spec.whatwg.org/multipage/workers.html
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The codebase modifications delineated in section 2.1 allow both client
and server Fragment Executer components to act as intermediaries be-
tween the caller of a fragment and the fragment code itself, similar to the
proxy pattern in traditional RPC. Data flows in and out of fragments via
function parameters, return values, and global variables. The CFD repre-
sents information about these aspects, as described earlier. During runtime,
each Fragment Executer verifies the current execution location of the
called fragment and, if the location is remote, redirects the data flow. The
callFunction event includes an optional defer property, signaling to
the Fragment Executer to execute the invoked fragment in the back-
ground. This accommodates long-running computations in the originally
called fragment, while permitting other fragments to execute concurrently.

Table 1: DCM Communication Protocol

Name Payload Description

updateFragments [object] fragmentSta-
tusList

triggered whenever
there is a change in the
fragments’ distribution
to synchronize Client
and Server Distributor

callFunction string funcName, [ob-
ject] params, boolean
defer?

triggered when a
fragment is called
remotely, to pass
incoming data to the
called fragment

functionResult string funcName, ob-
ject result

triggered when a frag-
ment invocation yields
a result to return it to
the caller

3 Related Work

The concept of code mobility has long been a subject of research interest
in distributed systems [1]. While the predominant code mobility paradigm
on the Web is Code on Demand, the availability of NodeJS and the Web-
Assembly standard [21] have opened paths to other paradigms like Remote
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Evaluation and Mobile Agents in the current Web environment. Section 3
provides an overview of the current code mobility landscape.

Code on Demand [1] stands as the most widely used code mobility
paradigm in Web applications, allowing clients to request and execute code
from the server at runtime through HTML script tags that implement the load-
ing and execution of JavaScript files within the browser. Popular client-side
frameworks like React, Vue, Angular, or Svelte are built upon this architec-
ture, where JavaScript code is loaded dynamically, often aided by Content
Delivery Networks (CDNs) for efficient delivery of commonly used code
artifacts for these frameworks. Notably, the paradigm Code on Demand is
included as the sixth architectural constraint of REST [6], thus influencing the
architectural design of many contemporary Web applications. Sparkle [19]
goes one step beyond common Code on Demand practice by supporting also
to capture, migrate, and restore application state. In contrast to the DCM
architecture, Code on Demand mobility is unidirectional, as it exclusively
migrates code units from the server to the client. While the name ”on de-
mand” implies a dynamic level of mobility, this is only partially fulfilled:
code artifacts are re-distributed from the server to the client at runtime, but
the actual decision to do so is established at design time and remains fixed
in typical Web applications using JavaScript or more recent platform-specific
approaches like Blazor2.

Remote Evaluation [1] mobility facilitate the one-way mobility of code
from the client to the server. Focused on supporting resource-constrained
mobile devices, offloading approaches such as MAUI [4], CloneCloud [3], or
ThinkAir [13] shift complex computations to the server. Code offloading has
become particularly relevant in the context of cloud computing [17]. Similar
to DCM, MOJA [2] and PIOS [18] leverage a uniform platform across the
client and server side, with MOJA also using WebSockets for communication.
However, unlike the DCM architecture, these approaches exclusively enable
code migration from the client to the server. Additionally, due to their reliance
on NodeJS, they are limited to JavaScript, while DCM’s use of WebAssembly
modules allows for the potential use and migration of code written in various
other Web languages.

Both Code on Demand and Remote Evaluation approaches do not con-
sider data flow redirection or state transfer, as their primary focus is on
unidirectional code mobility. This is addressed by the third following code
mobility paradigm.

2 https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
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Mobile Agents [1] approaches aim at the mobility of entire software
components across the network at runtime. An early example is Telescript [5],
which enabled mobile agents using a dedicated object-oriented language sup-
porting the migration of objects as software agents to other places at runtime.
Telescript also includes the capability to interrupt the execution of an agent
and resume it in the new place. Without the requirement for using a dedicated
new language, many mobile agent approaches, such as Java Aglets [15], make
use of Java’s threading and networking capabilities. Aglets combine Java
Aplets and Servlets, specifying lifecycle methods for Java objects to support
creation, cloning, dispatching, retraction, activation/deactivation, and mes-
saging, allowing them to move between the client and server. The execution
of Aglets can be paused and resumed with the previous state restored in the
new location.

As a more standards-based approach, HTML5 Agents [20] implements
the mobile agents paradigm using standardized Web technologies like
HTML5, CSS, and JavaScript, capitalizing on platform uniformity between
client and server through NodeJS. Additionally, newer Web standards such
as WebRTC and WebWorkers are leveraged in contemporary mobile agents
frameworks such as Liquid.js [9]. It focuses on delivering a seamless user
experience for moving Polymer.js-based Web Components across multiple
heterogeneous devices, effectively allowing these components to ”follow” the
user. Challenges in cross-device liquid computing specific to the JavaScript
runtime , especially in handling closures, have been addressed by Disclosure
[12]. To facilitate the execution state of migrated components, it proposes
an instrumentation-based technique with a limited runtime performance im-
pact of 0-15%. Mobile agents approaches are employed for code mobility
in the cloud-edge continuum. A recent approach is Self-distributing Systems
(SDS) [8], which puts particular emphasis on the state management of re-
locatable components [7]. The security challenges intrinsic to mobile agents
require additional cryptographic techniques to be implemented as in [14].

Compared to DCM, mobile agent approaches operate at a lower level of
granularity, moving entire components, including their code. Once a compo-
nent is moved, it no longer exists at its original location and can freely move
between peer hosts. This behavior potentially implies design-level security
challenges associated with mobile agents [1]. In DCM, these challanges
are less prominent, since code mobility occurs only within the client/server
boundaries of the same Web application, and the duplicated existence of the
binary code fragments on client and server side make it much harder to
introduce malicious ”new code.” The limited success of the mobile agents
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paradigm has also been attributed in part to the lack of an established plat-
form, particularly within browsers [1]. DCM leverages the changed landscape
with widespread browser support for WebAssembly, akin to the role of
containers in [16].

Table 2: Code Mobility landscape

Decision
Mobility

Unidirectional Bidirectional

Design Time
Code on Demand N/A
HTML script tags,
REST, .NET Bla-
zor, Sparkle [19]

Runtime Remote Evaluation Mobile Agents
MAUI [4],
CloneCloud [3],
ThinkAir [13],
MOJA [2],
PIOS [18]

Telescript [5],
Aglets [15],
HTML5 Agents
[20], Liquid.js [9],
Disclosure [12],
SDS [8]

4 Evaluation

To assess the DCM architecture and accompanying infrastructure, we im-
plemented and instantiated them using the Go language platform and its
compiler toolchain. Our experimentation encompasses four distinct scenar-
ios, each designed to test different facets of the architecture and infrastruc-
ture. These experiments aim to scrutinize the performance implications of
our proposed solution. Below, we outline the experimental materials and
methodology, present the results, and discuss the gained insights.

4.1 Material and Procedure

Our evaluation implementation of DCM, based on the Go language platform,
is available online for review. To ensure consistent conditions for repeated
evaluation runs and measurements, we containerized the evaluation setup
using Docker.
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Table 3 Experimental hardware environment
Side CPU RAM OS

Server
Intel Core i5-4460 16GB Debian Linux 12.1
4 Cores @3.2GHz DDR3-1600 64 bit

Client
AMD Ryzen 3 5425U 24GB Debian Linux 11.7
4 Cores @2.7GHz DDR4-3200 64 bit

Our experimental evaluation encompasses four scenarios, each with dif-
ferent configurations. These scenarios collectively examine the performance
impact of our proposed solution. Scenario I involves the steps for analysis
and compilation of code fragments as executable modules described in sec-
tion 2.1. Scenario II focuses on the network communication implementing
the DCM protocol between the client and server side Code Distributor com-
ponents, assessing stability and delays. Scenario III is an evaluation of the
runtime behavior of migration and fragment execution. Scenario IV explores
the impact of different fragment distributions. All evaluation materials and
test scripts are provided online3.

The test runs of the scenarios were using the hardware setup shown in
Table 3. Network connection between client and server via Wi-Fi 4 (IEEE
802.11n) with a delay between server and client measured via ping ranging
between 1.2ms and 40.0ms around a mean of 32.1ms (σ = 8.5ms).

4.1.1 Scenario I
This scenario explores the code fragment analysis and compilation steps,
assessing how different codebase sizes affect each component involved. As
material for scenario I, we selected four popular open-source Go projects
having a minimum ranking of 1000 stars on GitHub of different complexities
for evaluation as shown in table 4. In addition to the four public projects,
we developed a custom test suite in Go, consisting fewer Go sources files
but with a high number of fragments designed explicitly to test various com-
putations, errors, and data type handling. For all five sample projects, we
manually crafted the code fragment descriptions. To simulate integration into
a web engineer’s project settings, we created Docker configurations. The test
script executes three automated steps: code analysis, fragment generation,
and compilation. Each step underwent five repetitions, and execution times
were recorded.

3 https://github.com/heseba/dcm

https://github.com/heseba/dcm
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Table 4 Materials used for scenario I, indicating number of Go source files (#d) and number
of code fragments (#cf)

Name #D #CF Source
fzf 59 19 https://github.com/junegunn/fzf

Gin 92 25 https://github.com/gin-gonic/gin

frp 200 20 https://github.com/fatedier/frp

terraform 1240 7 https://github.com/hashicorp/terraform

custom 7 38 https://github.com/heseba/dcm

4.1.2 Scenario II
In this evaluation scenario, network connections and communication timings
between the server and client sides of the DCM architecture are analyzed.
Three different timings are captured: the round-trip time for an echo signal
between the client and server, the time taken to establish the initial WebSocket
connection on the client and for it to receive the first fragment list update,
and the time interval between receiving a migration command via the server-
side interface and the client receiving the new distribution information. To
facilitate these measurements, we developed a custom test application using a
modified version of the DCM infrastructure with extended access to the Web-
Socket connection and built-in time measurements. Specifically, we measure
the following three timings:

1. Echo time is measured by having the client send an echo event to the
server until receiving a response.

2. Initialization time measurement is initiated by reloading the page on the
client, which requests the list of fragments and execution locations until
it is received.

3. Command time measures the duration from the server-side reception of
a location update command via the API, forwarding this information to
the client until it is successfully received.

All three time measurements are repeated 100 times, resulting in 300
individual test runs.

4.1.3 Scenario III
This scenario serves as a demonstration of migration and fragment execu-
tion at runtime. It tests the execution results both before and after executing
fragments on the server and client side. To emulate long-running, side-effect-
free computations, we implemented two algorithms in Go and JavaScript:
Fibonacci and nth prime. Both algorithms were executed in three versions:
as server-side fragment plugins, as client-side WebAssembly modules, and

https://github.com/junegunn/fzf
https://github.com/gin-gonic/gin
https://github.com/fatedier/frp
https://github.com/hashicorp/terraform
https://github.com/heseba/dcm


Client-Server Code Mobility at Runtime 17

in plain JavaScript as the baseline for comparison. Scenario III encompasses
three distinct test cases:

1. Single evaluates the computation of Fibonacci to n = 100
2. Iterated assesses the computation of Fibonacci to n = 93 repeated in a

loop 1000 times
3. Prime examines the behavior under optimized and non-optimized exe-

cution conditions by calculating the 500,000th prime number

The value of n = 93 for the ”Iterated” test case is defined by the limit of Go’s
int64 type. The optimization of computation conditions for the ”Prime” test
case is implemented as follows: under optimized conditions 50 iterations are
run in a loop within the fragment itself, under the non-optimized conditions,
the fragment is invoked 50 times from outside. During the longer executions,
the system’s behavior when receiving incoming migration commands was
monitored.

4.1.4 Scenario IV
This scenario investigates the performance impact of differing fragment dis-
tributions for one client-server pair in order to explore the optimization
potential of location changes of individual code fragments. To that end, sce-
nario IV fully covers the distribution space from the all-client to all-server
configurations. As material, we use a custom codebase which contains n = 5
code fragments, which form an execution sequence: the result of fragment
CF1 invocation is passed to CF2, the result of which is passed to CF3 and
so on. As each fragment can have one of two possible execution locations
E(CFi) ∈ {server, client}, the scenario comprises 2n = 25 = 32 different
configurations for which corresponding CFDs are created. Each configuration
is executed with 100 repetitions, resulting in #r = 3200 test runs to measure
the execution times for all possible fragment distributions.

4.2 Results

In this section we report the results of our experimentation in the four sce-
narios. Please note that even for scenarios I-III these results differ from our
previous experimentation in [10], as all experiments were re-run with the
extended DCM infrastructure, on a new hardware setup as in Table 3, and
with higher numbers of repetitions.

Scenario I. Table 5 shows the statistics of the time measurements for
scenario I for the five samples per each step collected in 5x100 test runs. A
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Table 5 Scenario I Time measurements: min tmin and max tmax, mean µ, median t̃ and std.
deviation σ

Sample Step tmin tmax µ t̃ σ

fzf
code analysis 116ms 231ms 124.7ms 122ms 12.0ms
frag. generation 128ms 157ms 131.3ms 131ms 3.0ms
compilation 8,751ms 9,393ms 8,835.6ms 8,818ms 81.0ms

Gin
code analysis 127ms 271ms 136.1ms 134ms 14.5ms
frag. generation 127ms 224ms 131.8ms 131ms 9.9ms
compilation 5,769ms 28,337ms 6,058.0ms 5,826ms 2,250.7ms

frp
code analysis 194ms 267ms 210.9ms 208ms 10.971ms
frag. generation 129ms 160ms 132.8ms 132.5ms 3.284ms
compilation 7,033ms 7,405ms 7,113.9ms 7,087ms 80.1ms

terraform
code analysis 2,184ms 2,704ms 2,247.6ms 2,242ms 51.414ms
frag. generation 298ms 403ms 303.2ms 302ms 10.3ms
compilation 698ms 808ms 712.0ms 710ms 13.6ms

custom
code analysis 6ms 23ms 6.2ms 6ms 1.7ms
frag. generation 123ms 152ms 126.1ms 125ms 3.1ms
compilation 12,109ms 12,825ms 12,195.3ms 12,162ms 135.3ms

docker container was used to execute the test runner script. CFD specification
was facilitated by the DCM infrastructure enabling named fragments and
linting functionalities for missing dependencies or attributes. The new depen-
dency management technique did not interfere with the successful completion
of all 500 test runs: all corresponding fragments were compiled and deployed
automatically.

Scenario II. The measured times for the network communications of
scenario II for each test case collected in 100 test runs are shown in Ta-
ble 6. Additionally, connection recovery behavior was tested. When the page
was reloaded on the client side, the system could successfully reconnect the
server and client Code Distributor components in presence of several
other connected clients with a mean time to recover from a connection loss
of 15s.

Table 6 Scenario II Time measurements: min tmin and max tmax, mean µ, median t̃ and std.
deviation σ

Time Measurement tmin tmax µ t̃ σ

Echo time 2 ms 48 ms 32.14 ms 34 ms 7.844 ms
Initialization time 28 ms 61 ms 34.95 ms 34 ms 5.591 ms
Command time 23 ms 42 ms 31.36 ms 31 ms 3.700 ms

Scenario III. Section 4.2 shows the time measurements of the three test
cases in different configurations. All measurements are with browser-side
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Figure 3 Scenario IV execution times of 32 fragment distributions outliers filtered

caching enabled and excluding the initial loading times of WebAssembly
modules. These were measured at a mean of 44ms (σ = 12ms). Fragments
could be successfully migrated between server and client. Computed frag-
ment execution results of WebAssembly modules and server plugins were
always identical.

Table 7: Scenario III Measurements: number of elements and it-
erations and overall execution times for JavaScript, WebAssembly
and Server plugins

Case Elem. Iter. JS WASM Plugin

Single 100 1 1 ms 113 ms 37 ms

Iterated 93 10 1ms 1,083ms 107ms
93 1,000 12ms 101,049ms 2,766ms

Prime 100,000 10 0.827s 1.454s 2.815s
500,000 50 43.804s 41.591s/ 33.136s∗ 104.389s

* optimized

Scenario IV. Figure 3 shows the time measurements of the 32 test cases
across 100 test runs. The detailed data in Table 8 shows the descriptive
statistics for the different client-server fragment distributions, ordered from
all-client to all-server. The distribution column indicates the execution loca-
tion of the five code fragments: dist = E1E2E3E4E5 with Ei ∈ {c, s} such
that Ei = c ⇐⇒ CFi is executed on the client and Ei = s ⇐⇒ CFi is
executed on the server. The five fragments are in the order of their execution
sequence, i.e. CF1 is the first to be executed and CF5 the last with their
computation results passed in sequence.

4.3 Discussion

Scenario I. The measured times show that the analysis and compilation steps
depend on the codebase complexity. Intuitively, the more source files there
are in the codebase, the longer the accumulated time for AST creation and
thus the longer the code analysis time as well as the longer the time to gen-
erate the fragment code, as the required number of comparisons between the
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Table 8 Scenario IV Time measurements: code fragment distribution dist, min tmin and max
tmax, mean µ, median t̃ and std. deviation σ

dist tmin tmax µ t̃ σ

ccccc 238 ms 896 ms 350.66 ms 338 ms 90.166 ms
ccccs 231 ms 489 ms 314.42 ms 308 ms 41.125 ms
cccsc 197 ms 530 ms 343.47 ms 325.5 ms 59.524 ms
cccss 178 ms 905 ms 294.74 ms 268.5 ms 121.114 ms
ccscc 242 ms 526 ms 325.12 ms 304 ms 52.097 ms
ccscs 197 ms 538 ms 288.04 ms 289 ms 40.834 ms
ccssc 198 ms 365 ms 269.54 ms 291 ms 41.099 ms
ccsss 114 ms 742 ms 203.59 ms 201 ms 62.221 ms
csccc 253 ms 556 ms 323.49 ms 303 ms 59.490 ms
csccs 200 ms 1181 ms 305.61 ms 292 ms 137.912 ms
cscsc 190 ms 452 ms 270.74 ms 284 ms 52.546 ms
cscss 112 ms 420 ms 198.25 ms 192.5 ms 41.293 ms
csscc 195 ms 362 ms 263.39 ms 259 ms 34.050 ms
csscs 107 ms 216 ms 187.33 ms 198 ms 28.801 ms
csssc 104 ms 1009 ms 206.39 ms 199.5 ms 87.475 ms
cssss 78 ms 127 ms 100.3 ms 100 ms 8.631 ms
scccc 193 ms 388 ms 283.46 ms 298 ms 38.197 ms
scccs 165 ms 311 ms 219.79 ms 216.5 ms 26.772 ms
sccsc 189 ms 627 ms 289.45 ms 278 ms 104.367 ms
sccss 98 ms 210 ms 168.65 ms 167 ms 27.803 ms
scscc 159 ms 321 ms 232.21 ms 229.5 ms 35.552 ms
scscs 93 ms 212 ms 131.56 ms 115.5 ms 35.306 ms
scssc 104 ms 220 ms 170.52 ms 188 ms 34.666 ms
scsss 51 ms 139 ms 90.64 ms 96.5 ms 18.421 ms
ssccc 157 ms 635 ms 246.46 ms 236 ms 72.509 ms
ssccs 93 ms 403 ms 163.55 ms 161 ms 43.592 ms
sscsc 95 ms 250 ms 172.9 ms 189.5 ms 35.040 ms
sscss 50 ms 122 ms 83.76 ms 91.5 ms 18.151 ms
ssscc 91 ms 209 ms 149.04 ms 153.5 ms 31.032 ms
ssscs 51 ms 379 ms 89.26 ms 90 ms 45.037 ms
ssssc 57 ms 135 ms 98.28 ms 99 ms 11.285 ms
sssss 8 ms 48 ms 11.91 ms 10 ms 5.740 ms

CFD and the fragment code increases. The correlation between the number of
source files in the codebase #D and the measured analysis times (Spearman’s
ρ = 0.97, p < 0.001) and generation times ρ = 0.84, p < 0.001) are highly
significant at α = 0.01. Even for the largest codebase in our experiments,
Terraform, which comprises about 1200 Go source files, the analysis times
remain well below 3 seconds and the time for fragment generation well lower
than 1 second. The third step measure, the compilation of the resulting mod-
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ified codebase, directly depends on the number of code fragments produced
in the generation step. The correlation between the number fragments #D
and the measured compilation time (Spearman’s ρ = 0.59, p < 0.001) are
highly significant at α = 0.01. Compiling the custom codebase comprising
of 38 fragments took about 17 times longer than the 7 fragments of terraform.
Overall, we consider the impact on normal compilation and deployment ac-
tivities for Web applications through the DCM infrastructure negligible. In
particular, these extra times are not a runtime penalty, but occur at design
time and therefore only when the codebase is modified and without nega-
tive impact on the user experience. During experimentation with the 5 test
cases of scenario I, the DCM infrastructure’s linting functionality automati-
cally proposing corrections facilitated the execution of the experiment for the
researcher previously unfamiliar with DCM.

Scenario II. During our experiments evaluating the network communi-
cation and stability of DCM, the WebSocket connections between the client-
and serverside Code Distributor instances were established and managed
reliably for several clients. When network errors occured, the automatic local
execution and re-connects took over in order to ensure a consistent behavior
of the user interface. The mean times measured for all three test cases of
about 33 ms in 300 test runs are approximately equal to the raw network
delay of 32 ms of the test setup and with a comparable standard deviation.
Therefore, the performance impact of implementing the DCM architecture
in a Web application through additional network communication is very low
and not noticeable by end users.

Scenario III. The execution times for WebAssembly modules on the
client side are higher in comparison to native JavaScript and the server plug-
ins for two of three test cases. Here, the impact of the additional loading time
of WebAssembly modules, even with caching enabled, can be seen. However,
when considering that the mean loading time is 48 ms, the execution times for
the WebAssembly modules are much closer to those measured for the server
plugins. JavaScript consistently outperforms WebAssembly and plugins for
all but the largest test case. This advantage especially for lower numbers of
elements and iterations roots in the speculative optimizations of V8 runtime’s
JIT compiler Turbofan, that creates shapes for monomorphic functions. As
the number of elements and iterations increases, the advantage of JavaScript
over the two fragment types decreases, from a ratio of 1:113 for the Single
test case to 1:0.95/0.76 for the largest Prime test case. In these situations,
the effect of executing a compiled language instead of interpretation leads
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to lower times for the server-side plugins and to comparable times for the
WebAssembly modules.

Scenario IV. The results experimentation with 32 different code fragment
distributions show that there is a clear difference between the execution times
from a minimum of 12.0 ms for the all-server to a maximum of 350.7 ms for
the all-client distribution. The Kruskal-Willis test shows that this difference
is highly significant at α = 0.01 (H(31) = 2, 698, p < 0.001). This means
that the specific selection of execution locations for a given set of fragments
has an impact on the system performance, indicating a good potential for opti-
mization. In line with scenario III, our data shows that execution on the server
was faster than on the client. This can be seen in the significant (α = 0.01)
strong negative correlation between the execution times and the number of
fragments executed on the server side (Spearman’s ρ = −0.892, p < 0.01).
All measurements were performed on the test setup in idle state, so further
analysis simulating different load situations can investigate the concrete op-
timization potential depending on the situationally available client and server
resources.

4.4 Threats to Validity

The experiments presented above are designed to offer a proof of concept for
the feasibility of the DCM architecture and provide initial insights into its
implementation based on the DCM infrastructure.

Internal validity could potentially be compromised by the researcher
executing them. Compared to our initial experimentation in [10], we reduced
this bias through execution by a researcher who was previously not familiar
with the architecture and toolchain. A potential bias may stem from a single
person executing the complex experimentation, but it should be noted that
our claims do not pertain to the experience, effort, or difficulty faced by Web
Engineers. Supporting such claims would necessitate a user study involving
developer test subjects with diverse demographics. Moreover, the specific
selection of public real-world projects as material in scenario I might have in-
fluenced the results. We addressed this by choosing four popular Go projects
from GitHub, significantly varying in their size and also stemming from dif-
ferent application domains. The time measurement procedure eliminates the
risk for subjective biases, as all measurements were collected through auto-
mated means integrated into the scenarios’ code. Additionally, all materials
required for replication of this study are available on GitHub.
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External validity of our experiments is constrained by the choice of the
Go ecosystem. While this choice is valid for demonstrating the feasibility, the
concrete measurement results cannot be extrapolated to other WebAssembly-
compilable languages. This limitation is due to code analysis, fragment
generation, and compilation being reliant on the available AST parsers, com-
pilers, and language features. Consequently, further experimentation with
other Web languages is necessary to gain a broader understanding of the
DCM architecture. Generalizing our results beyond feasibility, particularly
regarding the applicability of DCM in different application domains, is not
within the scope of this study and would necessitate dedicated experiments
employing qualitative empirical approaches.

Construct validity is limited with regard to the measurements of com-
mand time in scenario II. Unlike the measurements in scenarios I, III and
IV, as well as the echo time and initialization time measurements in sce-
nario III, the command time calculation uses the difference between start
and end time stamps from two different host systems. While a more thorough
examination of performance would demand sophisticated instrumentation to
synchronize system clocks of the client and server host system, we assert
that the command time measurements are still valid for demonstrating the
general magnitude of DCM’s impact. Also, we refrain from making spe-
cific numerical claims for these measurements beyond. Both hosts’ clocks
were synchronized via the Network Time Protocol (NTP). According to the
NTP documentation4, the expected precision lies in the range of 5-100ms.
Thus, even in the presence of significant synchronization differences between
server and client during our measurements, command times would not exceed
250ms, which is still in line with our claims of low performance impact as
perceived by end users.

5 Conclusion & Future Work

This article presented a novel software architecture for Web applications that
facilitates the dynamic mobility of code fragments during runtime. This ar-
chitecture allows for distinct fragment distributions tailored individually to
each client-server pair, enabling better adaptation to the situational availabil-
ity of client and server resources. Unlike earlier code mobility approaches,
the architecture is not bound to a specific platform such as JavaScript or Java

4 cf. http://www.ntp.org/ntpfaq/NTP-s-algo.htm

http://www.ntp.org/ntpfaq/NTP-s-algo.htm
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and instead leverages W3C-standardized and well-established technologies
such as WebAssembly and Web Sockets.

On the basis of extensive experimentation with the proposed DCM ar-
chitecture, we shared our findings, addressing the principal challenges of
specifying and compiling mobile code fragments, orchestrating control flow
for fragment execution, and managing fragment distribution while redirecting
data flow at runtime. To support Web Engineers in building Web applications
with dynamic code mobility based on DCM, we devised a complementary
infrastructure. The proposed architecture and infrastructure are evaluated
through experimental results from three distinct scenarios that cover vari-
ous architectural aspects and assess the performance impact of the solution.
We have made all implementation and experimental materials available to
empower the Web Engineering community to replicate our experiments and
extend the approach.

The experiments produced a proof of concept for the feasibility of cre-
ating Web applications with dynamic code mobility following the DCM
architecture and offered initial insights into its implementation with the
support of the proposed infrastructure. Furthermore, they indicate that the
performance impact resulting from the necessary fragment management and
communication can be limited to negligible levels.

While these results are promising and highlight the potential of the
WebAssembly standard for enhancing the capabilities of the current Web
application infrastructure in terms of code mobility, we have identified sev-
eral limitations and areas for future research. Notably, as functions become
more stateful, handling state management during runtime migration becomes
increasingly challenging, which is intrinsic to code mobility [1]. The de-
sign of appropriate mechanisms for interrupting and resuming long-running
functions while preserving internal states presents an ongoing challenge, the
feasibility of which depends on specific language platforms.

Additionally, due to current limitations in exchanging data between
JavaScript and WebAssembly modules as numerical data via the Heap, han-
dling fragments with data flows comprising complex structured data that
cannot be easily represented necessitates the development of more advanced
serialization techniques or potential future extensions of the WebAssembly
standard to support object transformations.

In a broader conceptual sense, our work establishes a foundation for dy-
namic mobility of code fragments at runtime. To fully harness the benefits of
dynamically balancing user responsiveness and usability requirements with
resource utilization and economic considerations by software providers for
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individual client devices, an automatic decision system is essential. Such a
system could optimize fragment distribution at runtime based on informa-
tion about individual hardware capabilities and, especially, by runtime load
measurements on the client and server sides, and interact with DCM via the
provided API. The creation of such a decision system and its integration with
dynamic code mobility as in DCM represents a promising direction for future
research, and we intend to contribute presenting initial insights from ongoing
experiments in this direction.
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