
DCM: Dynamic Client-Server Code Migration

Sebastian Heil1[0000−0003−2761−9009] and Martin Gaedke1[0000−0002−6729−2912]

Technische Universität Chemnitz, Chemnitz, Germany
{sebastian.heil,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. The underlying Client/Server architecture of the Web inher-
ently raises the question of the distribution of application logic between
client and server. Currently, this distribution is static and fixed at design
time, inhibiting dynamic and individual load distribution between clients
and server at runtime. The benefits of dynamic migration allow balanc-
ing the needs of users, through increased responsiveness, and software
providers, through better resource usage and cost reductions. Recent
additions to the Web environment like WebAssembly provide a techno-
logical basis to move units of code at runtime. However, making use of
them to extend a web application with dynamic code migration capa-
bilities is challenging for web engineers. To that end, we devise a novel
distributed Client/Server software architecture for web applications that
supports dynamic migration of code at runtime, addressing the technical
challenges of dependency management, distribution of control and data
flow, and the required communication and interfaces. Our novel soft-
ware architecture aims at providing a point of reference to web engineers
seeking to extend their web applications with dynamic code migration
capabilities and to contribute to the current re-consideration of the Web
environment in the light of the standardization and wide-spread support
of WebAssembly in all major browsers. Our experiments with 3 scenarios
show that implementing such architecture is not only feasible but also
that the impact on performance is negligible.

Keywords: Web Infrastructure · Software Architecture · Code Mobility
· WebAssembly · WebSockets.

1 Introduction

Current Web applications are developed and executed on top of an established
stack of technologies. The underlying Client/Server architecture of the Web in-
herently raises the question of the distribution of application logic between client
and server. The design space for software architects is wide, ranging from rela-
tively thin clients where most of the application logic is executed on the server
side – e.g. making use of server-side MVC frameworks such as Django, ExpressJS,
Laravel or Rails – to architectures in which more computations are run client-side
in the browser and the server provides a minimal interface to the underlying data
layer – e.g. with client-side frameworks such as React, Vue, Angular, or Svelte
combined with high usage of AJAX.

2 S. Heil and M. Gaedke

While deciding the right distribution for a given web application depends
on various factors and individual requirements, the distribution is static and
fixed at design time. The mapping of units of code to either the client or server
side is decided a priori and cannot be changed later dynamically at runtime,
allowing to react to situational events and conditions. Especially in light of the
ever-increasing heterogeneity of user devices on the client side, this static design
time decision does not support balancing responsiveness/usability requirements
by users, resource usage, and economic considerations by the software providers.

The availability of JavaScript on the server side via NodeJS and the support
for executing server-side languages on the client side via WebAssembly [15], how-
ever, establishes more uniform client- and server-side platforms on top of which
the vision of code mobility [1] at runtime becomes relevant and achievable for
the Web. The benefits are a dynamic and individual distribution of load between
clients and server as well as potential cost reductions for software providers.

The objective of this paper is to devise a novel distributed Client/Server soft-
ware architecture for web applications that supports dynamically changing the
location of execution of units of code at runtime. We address the technical chal-
lenges of dependency management and compilation, distribution of control and
data flow, and the required communication and interfaces and propose solutions
for each of the challenges. The resulting architecture as well as a supporting
infrastructure was implemented and put to test in several scenarios.

The remainder of this paper is structured as follows: in section 2 we outline
our proposed solution architecture and the supporting infrastructure, section 3
positions our work against existing code mobility paradigms and approaches, in
section 4 we evaluate the feasibility of the architecture in 3 scenarios and show
that the performance overhead is negligible, and section 5 concludes the paper
with an outlook on directions for future work.

2 The DCM Architecture

In this section, we present our solution to enable dynamic code migration be-
tween client and server at runtime based on standardized Web technologies. We
propose a novel software architecture – the DCM Architecture – that empowers
Web Engineers to add dynamic code migration capabilities to the web applica-
tions they build with a dedicated focus on minimizing the impact/requirements
on the development activities. Figure 1 provides an overview of the main compo-
nents of the DCM Architecture and their interactions with each other. The DCM
Architecture specifies a supporting dynamic migration infrastructure (in blue)
that can be embedded into a web application (in black), on top of which Web
Engineers can control the migration through simple configuration. Our approach
comprises solutions to three main challenges:

1. the specification and compilation of migratable code fragments for client and
server,

2. the orchestration of execution/control flow of these fragments between client
and server, and the

DCM: Dynamic Client-Server Code Migration 3

Server

use

«Subsystem»

Web Application

(Server)

«Component»

Code Distributor (Server)

«Component»

Fragment Registry

instantiate

«Component»

Client Registry

read/update

«Component»

API Controller

call fragments,

deliver events,

call events

«Component»

Connection Handler

call/

return

«Component»

Fragment Executer

Plugins

save/load

«Component»

State Manager

Client

«Component»

Code Distributor (Client)

«Component»

Fragment Executer

WASM Modules

«Component»

State Manager

«Component»

Connection Handler

«Component»

Fragment Registry

«Subsystem»

Web Application (Client)static assets«Component»

App. Routing

load

CFD

save/load

call fragments/

deliver results

check

execution location

update

use

connect/

update

Fig. 1. Main Components and Interactions of the DCM Architecture enabling Dynamic
Code Migration between Client and Server at Runtime. Supporting Infrastructure is
Highlighted in Blue, Automatically Generated Artifacts are Highlighted in Green.

3. synchronization of fragment distribution information and redirection of data
flow at runtime.

The following subsections detail our solutions to these three challenges.

2.1 Generation and Compilation of Code Fragments

In this subsection, we outline our concept of migratable code fragments, how Web
Engineers can specify these parts of the codebase to be executable on server and
client side, the required metadata and its semi-automatic extraction, as well
as the validation, compilation and deployment of executable modules from the
specified code fragments.

Specification of Code Fragments. To allow the Web Engineer to specify
migratable subsets of the web application’s codebase that can be dynamically
moved between client and server at runtime, we define these as Code Fragments.
A code fragment CF = (Di, L, T,M) consists of the specification of its source
document Di ∈ C within the codebase C and limits L = (α, ω) (line numbers
α, ω ∈ N) within Di, its type T ∈ {function, variable, typedefinition} and
the migration-relevant metadata M . Limits can be expressed either via code
annotations in the source code itself or externally by numerical specification. In
DCM, the level of granularity for specifying executable code fragments is on the
level of individual functions to provide a balance between fine-grained control
(i.e. smaller re-use units than components/classes) and isolation/dependency
management (i.e. larger than sets of statements). Fragments for variables and

4 S. Heil and M. Gaedke

1 1located

at

Code File

Name

Content

Location

Start

End

0..n 1source
document

Code Fragment

Execute at

Libraries

Source Code
n

ref

m

Imports

Package Information

Variable Fragment

Variable Metadata

Function Fragment

Function Metadata

Typedef Fragment

Variable Metadata

Extends

Fig. 2. Code Fragments Data Model. Web Engineer provided information in blue,
automatically identified information in green.

type definitions are required to handle imports of the functions but are not
executable on their own.

As shown in fig. 2 a fragment aggregates Web Engineer-provided informa-
tion and information automatically identified through static code analysis of the
codebase. In addition to location and fragment type information Di, L, T , Web
Engineers specify the intended initial execution location (server or client), li-
braries used, and referenced other fragments. The automatically identified infor-
mation comprises the actual source code as specified by the location information,
imports from other sources, package information, and structural information of
functions/variables/type definitions such as function parameters. Information
about all code fragments is aggregated in the artifact denoted as CFD (code
fragment description) in fig. 1. A sample excerpt of the manually specified parts
of a CFD can be seen in listing 1.1.

Syntax Analysis allows to automatically derive information from the code-
base necessary for the compilation of code fragments without requiring manual
specification by the Web Engineer and thus significantly reducing the required
effort. Our approach operates on the abstract syntax tree (AST) resulting from
parsing the source code and identifying tokens and their relations according to
the grammar of the programming language in use. Generating the AST from
the source code requires language-dependent tooling. To extract the data about
imports from other sources, package information, and structure of functions/-
variables/type definitions, the AST is traversed, and the collected data merged
with the specifications manually made by the Web Engineer.

1 fragments :
2 . . .
3 - id : 6
4 name: GetHash
5 runOn: c l i e n t
6 l o c a t i o n : { f i l e p a t h : s h a r e d / s h a r e d . go }
7 l i b s : [c r y p t o / sha256 , e n c o d i n g / hex]

DCM: Dynamic Client-Server Code Migration 5

8 . . .
9 - id : 21

10 name: C r e a t e E m p l o y e e
11 runOn: c l i e n t
12 dependsOn: [6]
13 l o c a t i o n : { f i l e p a t h : s h a r e d / emp l o y e e . go }
14 . . .

Listing 1.1. Sample excerpt of a Code Fragment Description

Compilation of Code Fragments. To support execution of code fragments
specified by the Web Engineer in the CFD on server and client, they need to be
compiled for both target platforms. The compilation target on the server side de-
pends on the specific language and platform (typically shared objects, dynamic-
link libraries etc.), the compilation target on the client side is WebAssembly.
Server-side compiled artifacts are managed as plugins, client-side compiled ar-
tifacts as WebAssembly modules, both of which can be dynamically loaded at
runtime.

The compiler input for building the language-specific plugins and WebAssembly
modules is automatically created based on the codebase and the metadata of each
code fragment. As parts of this information are user-provided, a CFD Validator
checks the structural validity and completeness of the CFD. Errors such as du-
plicate fragments or missing required information are reported with additional
debug information so that the Web Engineer is supported in fixing them. If val-
idation is passed, automatic code generation and transformation is performed.
The generated code for plugin and WebAssembly fragments handles imports and
dependencies to turn them into separately compilable units of code. This requires
consideration of all fragments’ metadata together as duplicate imports resulting
from dependency chains need to be resolved. The existing codebase is modified
so that invocations of code declared as migratable fragment are redirected to
the Fragment Executer. This allows executing either the server-side plugin or
forwarding the control and data flow to the client-side DCM infrastructure to be
handled by the corresponding WebAssembly module. DCM infrastructure com-
ponents (c.f. Code Distributor in fig. 1) are injected. The resulting modified
codebase is then compiled for server and client and plugins and WebAssembly
modules (including JS glue code) are moved to the correct directories for avail-
ability for the server and client side code distributor. In particular, WebAssembly
modules need to be deployed to the directory serving static assets (JavaScript,
CSS) so they can be loaded via HTTP(S) on the client side.

2.2 Dynamic Migration of Code Fragment Execution

To enable the execution location of code fragments to dynamically change at run-
time, the DCM architecture specifies infrastructure that handles their life cycle,
and the distribution of control and data flow. These are the Code Distributor
components on the server and client side (cf. fig. 1). They manage the loading,

6 S. Heil and M. Gaedke

execution, and termination of plugins/WebAssembly modules respectively, and
synchronize the required incoming/outgoing data flows and events.

Code Distributor (Server). Architecturally, the Code Distributor com-
ponent can be either embedded with the web application itself or an exter-
nal stand-alone proxy-like server process, potentially on a different host. Unlike
approaches like HTML5 Agents [14], we propose a direct embedding due to
lower required resources/operations and maintenance efforts and lower com-
munication complexity. Embedding requires adding the DCM library to the
web application’s imports and registering routes for the Code Distributor in
the application-internal routing. These steps can be automated in the code-
base modifications of the compilation step described in section 2.1. The Code
Distributor checks incoming client requests and signals connection errors. For
valid requests, it performs session management using a Client Registry. To-
gether with the Fragment Registry, it keeps track of all code fragments and
enables different individual fragment distribution patterns per client. Both reg-
istries are initialized from the Web Engineer’s specifications of available code
fragments and their initial execution location in the CFD. The fragment distri-
bution status is synchronized with each client’s Code Distributor, updates in
the fragments’ execution location trigger the required steps for control and data
flow migration via the Fragment Executer. To execute a fragment on the server
side, the Fragment Executer loads and executes the compiled plugin fragment.
The fragment’s state is monitored by the State Manager to be able to restore it
after migration. In particular, this comprises changed/initialized variables, loops,
and time functions. Changes in resources shared with other fragments are syn-
chronized. The API Controller provides a RESTful interface to monitor and
control the dynamic code migration. It interfaces the fragment distributions per
client and allows to change them in order to trigger a migration at runtime. This
enables scenarios in which an automated decision system can determine optimal
distributions based on runtime measurements of load, network bandwidth, etc.

Code Distributor (Client). The client-side DCM infrastructure mirrors
the Fragment Executer and State Manager components described above for
execution and state management. While the server-side Code Distributor is
implemented in the web application’s backend language, its client-side equiva-
lent is implemented in JavaScript and served via the application’s static web
resources. The Fragment Executer handles loading, initialization, and invoca-
tion of fragments previously compiled to WebAssembly modules and the data
conversions between JavaScript and backend language’s type system within the
WebAssembly modules. Information about the execution is retrieved from the
Fragment Registry before each invocation, which is synchronized with the
server side. Similar to offloading approaches like MAUI [4] and ThinkAir [9],
fragments are initially executed locally until updates are received to enable exe-
cution during connection establishment and initialization. Likewise, connection
losses lead to local client-side execution as fallback. Fragments are executed as
tasks via a pool of WebWorkers.

DCM: Dynamic Client-Server Code Migration 7

2.3 Client/Server Synchronization and Data Flow Redirection

The DCM code distributor components need to constantly exchange information
bidirectionally in order to synchronize fragments and distribution state and to
maintain the data flow from and to fragments when they change their execution
location. This subsection outlines the corresponding communication channels
and protocol. We propose to employ WebSockets for communication, offering a
bidirectional connection between client and server-side DCM infrastructure, as
it currently is supported by more browsers than the new WebTransport W3C
standard. Messages within the WebSocket connections are represented in JSON.
The Connection Handler components establish client-server WebSocket con-
nections on initialization. Clients identify themselves via JSON Web Tokens
(JWT) which are included in all communications to allow the server to handle
fragment distributions for each client individually. Client and server communi-
cate by exchanging events represented as JSON via the WebSocket connection.

Table 1 shows the main events of the DCM communication protocol. There
are events for two different purposes: a) to exchange information required for the
management of fragments and distribution state, and b) to enable the redirection
of data flow for fragments where caller and callee are not on the same side.

Through the codebase modifications described in section 2.1, both client and
server Fragment Executer serve as proxies between the caller of a fragment
and the fragment code itself. Data flows in and out of the fragments via function
parameters, return values, and global variables. The information about these
is gathered and contained in the CFD as described above. At runtime, each
Fragment Executer checks the current execution location of the called fragment
and redirects the data flow if the location is not local. The callFunction event
allows specifying an optional defer property that tells the Fragment Executer
to execute the invoked fragment in the background, enabling other fragments to
be executed during a long-running computation in the initially called fragment.

Table 1. DCM Communication Protocol Events.

Name Payload Description
updateFragments [object] fragmentStatus-

List
triggered whenever there is a change in
the fragments’ distribution to synchronize
Client and Server Distributor

callFunction string funcName, [object]
params, boolean defer?

triggered when a fragment is called re-
motely, to pass incoming data to the called
fragment

functionResult string funcName, object
result

triggered when a fragment invokation yields
a result to return it to the caller

8 S. Heil and M. Gaedke

3 Related Work

Code mobility has long been a topic of research interest for distributed systems
[1]. While, Code on Demand is the pre-dominant code mobility paradigm on the
Web, the availability of NodeJS and the WebAssembly standard [15] has opened
opportunities for other paradigms such as Remote Evaluation and Mobile Agents
in the recent Web environment.

Code on Demand [1] is the most widely used code mobility paradigm in
Web applications. The ability of the client to request and execute code from the
server at runtime is supported via HTML script tags allowing to load JavaScript
files and execute them in the browser. Popular client-side frameworks like React,
Vue, Angular, or Svelte imply an architecture in which JavaScript code is loaded
at runtime and dedicated infrastructure – Content Delivery Networks (CDNs)–
to support faster provision of the most commonly loaded framework code arti-
facts are used. Most prominently, the Code on Demand mobility paradigm was
included as the sixth architectural constraint of REST [6] which forms the archi-
tectural blueprint for many current Web applications. Beyond common Code on
Demand practice, Sparkle [13] additionally supports capturing, migrating, and
restoration of application state. Unlike the DCM architecture, Code on Demand
mobility is unidirectional, from server to client, and, while the actual code ar-
tifacts are migrated at runtime, the decision to execute them on the client side
is fixed at design time for common Web applications using JavaScript, or, for
recent platform-dependent approaches like Blazor1, Web Assembly.

Remote Evaluation [1] approaches allow a unidirectional change of the
execution location of a unit of code from client to server. Offloading approaches
like MAUI [4], CloneCloud [3], or ThinkAir [9] focus on supporting computation-
ally weaker mobile devices by running computations on the server. Like DCM,
MOJA [2] and PIOS [12] make use of a uniform platform of client and server side
and MOJA also uses WebSockets for communication. Unlike the DCM architec-
ture, however, the direction is only from client to server, and due to building on
NodeJS, they are bound to JavaScript, while the use of WebAssembly modules
in DCM potentially enables using and migrating arbitrary languages. Both Code
on Demand and Remote Evaluation approaches do not consider redirections of
data flow or transfer of state as they focus on unidirectional code mobility.

Mobile Agents [1] approaches are focused on moving entire software com-
ponents at runtime across the network. Telescript [5] was an early approach that
enabled mobile agents by providing a dedicated object-oriented language sup-
porting the migration of objects as software agents to other places at runtime,
including the ability to interrupt the execution of an agent and continue it in
the new place. Instead of requiring a dedicated language, many mobile agents
approaches like Java Aglets [10] employ the threading and networking capabili-
ties of the Java platform [1]. Aglets combine Java Aplets and Servlets, specifying
lifecycle methods for Java objects that support their creation, cloning, dispatch-
ing, retraction, activation/deactivation and messaging to move them between

1 https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

DCM: Dynamic Client-Server Code Migration 9

client and server. Execution of Aglets can be paused and resumed with the pre-
vious state in a new location. HTML5 Agents [14] implement the mobile agents
paradigm on top of standardized Web technologies: HTML5, CSS, JavaScript.
It makes use of the platform uniformity on client and server through NodeJS.
Liquid.js [7] is another contemporary mobile agents framework making use of
Web standards such as WebRTC and WebWorkers. It focuses on a seamless user
experience for moving Web Components, via polymer.js, across multiple het-
erogenous devices to allow them to "follow" the user. Disclosure [8] addresses the
JavaScript-runtime-specific challenge in cross-device liquid computing to handle
closures. To enable execution state of the migrated component, it proposes an
instrumentation-based technique that has a limited runtime penalty of 0-15%.
In comparison to DCM, mobile agents approaches have a lower level of granu-
larity, moving components as a whole, including its code. The moved component
therefore no longer exists at its origin and moves freely between peer hosts. The
implied design-level security challenges of mobile agents [1] are less severe in
DCM, as code migrates only between client/server of the same application and
its redundancy means that "new code" cannot be easily introduced. The lack
of an established platform particularly in browsers is considered an important
reason for the limited success of mobile agents [1]. DCM leverages the changed
situation of wide browser support for WebAssembly similar to containers in [11].

4 Evaluation

To evaluate the proposed DCM architecture and infrastructure, we instantiated
these using the language platform and compiler toolchain of Go. Our experiments
are based on three scenarios that put different aspects of the architecture and
infrastructure under test to investigate the performance impact of the proposed
solution. In the following, we describe the material and evaluation procedure,
report the obtained results, and discuss them.

4.1 Material and Procedure

The Go-based evaluation implementation of DCM is available online for review.
To facilitate and homogenize repeated evaluation runs and measurements under
equal conditions, the evaluation setup was container-virtualized using Docker.
Our experimental evaluation comprises three scenarios with different configu-
rations each. Scenario I covers the analysis and compilation steps necessary to
create executable modules described in section 2.1. Scenario II tests the required
network communication between the client and server side Code Distributor
components with regard to stability and delays. Scenario III evaluates the behav-
ior of migration and fragment execution at runtime. All evaluation materials and
test scripts are provided online2. The test runs of the scenarios used the follow-
ing hardware: Server: AMD EPYC Processor (2 CPUs @ 3.7Ghz), 4GB RAM,

2 https://github.com/heseba/dcm

https://github.com/heseba/dcm

10 S. Heil and M. Gaedke

Debian Linux 10 64-bit. Client: Intel Core i5-4690K (4 CPUs @3.5GHz), 16GB
RAM, Windows 10 Pro 64-bit (Build 19044). Network delay between server and
client measured via ping ranges between 16.5ms and 44.6ms.

Scenario I. This scenario investigates the analysis and compilation of code
fragments and the impact of different codebase sizes on each involved compo-
nent. Two popular open source projects in Go language were selected as material
from Github: wire3 at about 200 and terraform4 at about 1200 Go source files.
For terraform, a docker configuration was created to simulate the settings for
integration into a project by a web engineer. Additionally, a custom test suite in
Go with 7 Go files and a high number of fragments dedicatedly testing different
computations, errors, and data type handling was created. For all three sample
projects, CFDs were manually created (wire: 5, terraform: 6, custom: 37 frag-
ments). For each of the three samples, the test script would perform the three
automatic steps of code analysis, fragment generation, and compilation. Each
step was repeated five times and execution time was captured.

Scenario II. This evaluation scenario tests the network connections and
communication timings between server and client side of the DCM architecture.
To that end, the timings for different cases are measured: the round-trip time
for an echo signal between client and server, the time until the initial WebSocket
connection to the client is established and it has received the first fragment list
update and the time between receiving a migration command via the server-side
interface and the client receiving the new information. The measurements are
implemented in a custom test application using a modified version of the DCM
infrastructure with extended access to the WebSocket connection and inbuilt
time measurements. Echo time is measured by the client sending an echo event
to the server until receiving the response. Initialization time measurement is
triggered by a page reload on the client, requesting the list of fragments and
execution locations until it receives it. Command time is measured from the
server side receiving a location update command via the API, forwarding the
information to the client until it is received.

Scenario III. This scenario showcases the migration and fragment execution
at runtime. It tests the execution results before and after execution of fragments
on server and client. To simulate long-running, side-effect-free computations, two
algorithms were implemented in Go and JavaScript: Fibonacci and nth prime.
These are run as server-side fragment plugin and as client-side WebAssembly
module, as well as in plain JavaScript as baseline. The scenario comprises three
test cases: Single tests the computation of the Fibonacci to n = 100. Iterated
tests the computation of the Fibonacci to n = 93 (the limit of Go’s int64)
repeated in a loop for 1000 times. Prime tests the behavior for optimized vs. non-
optimized execution conditions by computing the 500.000th prime number. The
optimized conditions run 50 iterations within the fragment itself, whereas non-
optimized execution invokes the fragment 50 times. During the longer executions,
the system behavior by incoming migration commands was observed.

3 https://github.com/google/wire
4 https://github.com/hashicorp/terraform

https://github.com/google/wire
https://github.com/hashicorp/terraform

DCM: Dynamic Client-Server Code Migration 11

4.2 Results

Scenario I. Table 2 shows the time measurements for scenario I for the three
samples per each step collected in 5 test runs rI,1 to rI,5. The test runner script
was executed in a running docker container. All test runs were completed success-
fully. The DCM infrastructure assisted the CFD specification by showing hints,
e.g. for missing dependencies or attributes. All fragments could be successfully
compiled and were automatically deployed to the correct directories.

Table 2: Scenario I Measurements: test runs rI,1 to rI,5

Sample Step rI,1 rI,2 rI,3 rI,4 rI,5

Wire
code analysis 41ms 42ms 39ms 39ms 37ms
frag. generation 48ms 48ms 53ms 49ms 55ms
compilation 18ms 18ms 19ms 19ms 21ms

Terraform
code analysis 1,841ms 1,589ms 1,559ms 1,577ms 1,542ms
frag. generation 192ms 178ms 179ms 176ms 174ms
compilation 457ms 436ms 421ms 410ms 386ms

Custom
code analysis 3ms 3ms 3ms 3ms 3ms
frag. generation 63ms 59ms 59ms 61ms 61ms
compilation 13,734ms 7,198ms 7,131ms 7,413ms 7,141ms

Scenario II. Table 3 shows the time measurements for the network communi-
cations of scenario II for each test case collected in 5 test runs rII,1 to rII,5.
Additionally, we tested connection recovery behavior. The mean recovery time
from a connection loss was 15s. After a client-side page reload, the system could
successfully reconnect the Code Distributor components of client and server
in presence of several other connected clients. The mean roundtrip time was
21ms (σ = 1ms). Initialization took 42.8ms on average (σ = .45ms). A fragment
update command was distributed in 43.8ms (σ = .45ms).

Table 3: Scenario II Measurements: test runs rII,1 to rII,5

Time Measurement rII,1 rII,2 rII,3 rII,4 rII,5

Echo time 22ms 20ms 22ms 20ms 21ms

Initialization time 43ms 43ms 43ms 42ms 43ms

Command time 44ms 43ms 44ms 44ms 44ms

Scenario III. Table 4 shows the time measurements of the three test cases
in different configurations. All measurements are with browser-side caching en-
abled and excluding the initial loading times of WebAssembly modules. These

12 S. Heil and M. Gaedke

were measured at a mean of 44ms (σ = 12ms). Fragments could be success-
fully migrated between server and client. Computed fragment execution results
of WebAssembly modules and server plugins were always identical.

Table 4: Scenario III Measurements: number of elements and it-
erations and overall execution times for JavaScript, WebAssembly
and Server plugins

Case Elem. Iter. JS WASM Plugin

Single 100 1 0.1ms 60.6ms 28.1ms

Iterated 93 10 0.3ms 638ms 246ms
93 1,000 30ms 69,326ms 24,179ms

Prime 100,000 10 2.21s 3.8s 0.74s
500,000 50 132.56s 185.04s/

159.45s∗
21.03s

* optimized

4.3 Discussion

Scenario I. The measurements show that analysis and compilation times depend
on the complexity of the codebase. Expectedly, the more files in the codebase,
the longer the AST-based analysis time and the time to generate the fragment
code due to the higher number of comparisons between CFD and the fragment
code. However, even for larger projects like Terraform with about 1200 code files
analysis times remain well under 2 seconds and generation times well below 1
second. The compilation time directly depends on the number of fragments from
the generation step. The impact of the overall times through our infrastructure
on the regular compilation and deployment activities for Web applications can be
considered negligible, especially as the added time does not occur at runtime but
at design time and thus less frequent. In our experiments, we further observed
some difficulties to manage the fragment IDs manually. This could be improved
through a UI with automatic ID assignment or non-integer expressive fragment
names as identifiers. No further difficulties were encountered in the three test
cases and the DCM infrastructure’s hints with automatic correction proposals
facilitated executing scenario I.

Scenario II. Our experiments show that the underlying WebSocket connec-
tions could be reliably established and managed for different clients. Automatic
re-connects improve the user experience in presence of network errors. The rel-
atively low and constant times for all three test cases, placed well within the
range of the test setup’s raw network delay (16.5-44.6ms), exhibit a very low im-
pact on the runtime performance of a Web application implementing the DCM
architecture and are barely noticeable by end users.

Scenario III. WebAssembly plugins on the client side exhibit higher exe-
cution times compared to native JavaScript and server plugins for all three test

DCM: Dynamic Client-Server Code Migration 13

cases. This is particularly due to the additional loading time of WebAssembly
modules, even with caching enabled. Considering the WebAssembly execution
time without the mean loading time of 44ms, results are much closer to the
server plugin times. Apart from not requiring comparable initial loading times,
the advantage of native JavaScript over both fragment types for lower numbers
of elements and iterations stems from the speculative optimizations of V8 run-
time’s JIT compiler Turbofan, creating shapes for monomorphic functions. With
higher numbers of elements and iterations, this advantage reduces relative to the
advantage of compiled language execution compared to interpretation, leading to
better times for server plugins and similar times with WebAssembly (excluding
module loading times as mentioned above).

Threats to Validity. Our experiments aim at providing a proof of con-
cept for the feasibility of the DCM architecture and some first insights on its
implementation supported by the DCM infrastructure. Internal validity can be
threatened by the execution of the experiments’ manual activities by one single
student assistant familiar with the architecture and toolchain. However, we are
not making particular claims about Web Engineers’ experience, effort, or diffi-
culty, which would require a user study involving developer test subjects with
diverse demographics. The specific choice of public real-world projects in sce-
nario I can have influenced the results, but we selected two popular Go projects
from Github at different sizes and from different domains. All reported time
measurements were automatically measured based on integration in the scenar-
ios’ code without the potential for subjective biases. Furthermore, all evaluation
materials are available on GitHub for replication. External validity of our ex-
periments is limited specifically by the choice of the Go ecosystem. While valid
for demonstrating feasibility, the measurement results cannot be generalized to
other WebAssembly-compilable languages, as the code analysis, fragment gener-
ation, and compilation are dependent on the available AST parsers, compilers,
and language features. For that reason, further experimentation with other lan-
guages is required for a more general understanding of the DCM architecture.
Generalization of our results beyond feasibility, e.g. concerning the applicabil-
ity of DCM in different application domains, is not intended and would require
dedicated experimentation with qualitative empirical approaches. Construct va-
lidity is threatened for the command time measurements of scenario II. Unlike
measurements of scenario I, III, and for echo time and initialization time, the
command time is based on start and end time stamps from two different host sys-
tems. While a dedicated study of performance would require more sophisticated
instrumentation to synchronize the system clocks, we argue that the command
time measurements are still valid to show the general dimension of the impact
of DCM. We do not make specific numerical claims for these measurements be-
yond. Both hosts’ clocks were synchronized via NTP with an expected prevision
in the 5-100ms5 range, so that even for large synchronization differences com-
mand times would reach a maximum of 250ms, not violating our claims to low
impact on performance perceived by end users.

5 cf. http://www.ntp.org/ntpfaq/NTP-s-algo.htm

http://www.ntp.org/ntpfaq/NTP-s-algo.htm

14 S. Heil and M. Gaedke

5 Conclusion & Future Work

In this paper, we proposed a novel software architecture for Web applications
enabling dynamic migration of code fragments at runtime. It enables differing
fragment distributions individually per each client-server pair to better adapt to
situational availability of client/server resources. Unlike previous code mobility
approaches, it is platform-agnostic, leveraging W3C standardized and estab-
lished technologies such as WebAssembly and Web Sockets. Based on extensive
experimentation with the DCM architecture, we provided insights on how to
address the main challenges of specification and compilation of migratable code
fragments, orchestration of fragment execution control flow, and distribution
management and redirection of data flow at runtime. To that end, we devise a
supporting infrastructure that supports Web Engineers to make use of DCM. To
evaluate the proposed architecture and infrastructure, we reported and discussed
the results of experimentation with three different scenarios addressing different
architectural aspects and performance impact of the solution. All implemen-
tation and experimental materials are provided to allow the Web Engineering
community to replicate our experiments and extend the approach. Our experi-
ments provided a proof of concept for the feasibility of the DCM architecture,
some first insights on its implementation supported by the proposed infrastruc-
ture, and indicate that the impact on performance from the required fragment
management and communication can be limited to negligible levels.

While these results are promising and showcase the potential of the Web-
Assembly standard for extending the capabilities of the current Web application
infrastructure in the context of code mobility, we also identified some limitations
and directions for future work. Running well for migrating atomic, side-effect
free functions at runtime, state management, a code mobility challenge for a
long time[1], is hard the more stateful these functions are. Suitable mechanisms
for interruptions of long-running functions with restoring of internal states are
an open challenge the achievability of which depends also on the specific lan-
guage platforms. Also, due to the current limitations of exchanging data be-
tween JavaScript and WebAssembly as numerical data via the Heap, fragments
with data flows comprising complex structured data that cannot be easily trans-
formed, require the development of more sophisticated serialization techniques
or potential future extensions of the WebAssembly standard for supporting ob-
ject transformations. Conceptually our work establishes a basis for the dynamic
migration of code fragments at runtime. To fully leverage the benefits of situa-
tionally balancing responsiveness/usability requirements by users with resource
usage and economic considerations by software providers for each individual
client, an automatic decision system is required. It could optimize the fragment
distribution at runtime based on information on the individual hardware capa-
bilities and, particularly, through measurements of current load on client and
server side, interacting with DCM via the provided API. The creation of such a
decision system and the integration with dynamic code migration like in DCM
are promising directions for future research to which we plan to contribute first
insights from currently ongoing experiments.

DCM: Dynamic Client-Server Code Migration 15

Acknowledgements The authors would like to thank Alexander Senger for
his valuable contributions to the proof-of-concept implementation of the DCM
architecture and the evaluation experiments.

References

1. Carzaniga, A., Picco, G.P., Vigna, G.: Is Code Still Moving Around? Looking Back
at a Decade of Code Mobility. In: Proc. of ICSE’07 Companion. pp. 9–20. IEEE
(2007)

2. Chaoran Xu, Murray, N., Yuansong Qiao, Lee, B.: MOJA - Mobile Offloading for
JavaScript Applications. In: Proc. of ISSC/CIICT 2014. pp. 59–63. Institution of
Engineering and Technology (2014)

3. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: CloneCloud: Elastic Exe-
cution between Mobile Device and Cloud. In: Proc. of 6th EuroSys. p. 301. ACM
Press, New York, New York, USA (2011)

4. Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P.: MAUI: Making Smartphones Last Longer with Code Offload. In: Proc.
of 8th MobiSys. p. 49. ACM Press, New York, New York, USA (2010)

5. Domel, P.: Mobile Telescript agents and the web. In: COMPCON ’96. Technologies
for the Information Superhighway Digest of Papers. pp. 52–57. IEEE Comput. Soc.
Press (1996)

6. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California, Irvine (2000)

7. Gallidabino, A., Pautasso, C.: The LiquidWebWorker API for Horizontal Offload-
ing of Stateless Computations. Journal of Web Engineering 17(6), 405–448 (nov
2019)

8. Kim, J.Y., Moon, S.M.: Disclosure: Efficient Instrumentation-Based Web App Mi-
gration for Liquid Computing. In: Web Engineering. Proc. of ICWE 2022. pp.
132–147. Springer, Cham (2022)

9. Kosta, S., Aucinas, A., Pan Hui, Mortier, R., Xinwen Zhang: ThinkAir: Dynamic
resource allocation and parallel execution in the cloud for mobile code offloading.
In: Proc. of IEEE INFOCOM. pp. 945–953. IEEE (2012)

10. Lange, D., Oshima, M.: Mobile agents with Java: the Aglet API. World Wide Web
1, 1–18 (1998)

11. Mäkitalo, N., Mikkonen, T., Pautasso, C., Bankowski, V., Daubaris, P., Mikkola,
R., Beletski, O.: WebAssembly Modules as Lightweight Containers for Liquid IoT
Applications. In: Proc. of ICWE2021. pp. 328–336. Springer, Cham (2021)

12. Park, S., Chen, Q., Yeom, H.Y.: PIOS: A platform-independent offloading system
for a mobile web environment. 2013 IEEE 10th CCNC pp. 137–142 (2013)

13. Siu, P.P., Belaramani, N., Wang, C.L., Lau, F.C.: Context-aware state manage-
ment for ubiquitous applications. In: Embedded and Ubiquitous Computing. EUC.
vol. 3207, pp. 776–785. Springer Verlag (2004)

14. Voutilainen, J.p., Mattila, A.l., Systä, K., Mikkonen, T.: HTML5-based mobile
agents for Web-of-Things. Informatica 40(1), 43–51 (2016)

15. WebAssembly Community Group: WebAssembly Specification — WebAssembly
2.0 Draft 2022-12-15 (2022), https://webassembly.github.io/spec/core/

https://webassembly.github.io/spec/core/

	DCM: Dynamic Client-Server Code Migration

