
Enhancing Web Applications with Dynamic Code
Migration Capabilities

Sebastian Heil1[0000−0003−2761−9009], Jan-Ingo Haas1[0000−0003−1112−3893], and
Martin Gaedke1[0000−0002−6729−2912]

Technische Universität Chemnitz, Chemnitz, Germany
{firstname.lastname}@informatik.tu-chemnitz.de

Abstract. Dynamic migration of code between client and server of a
web application allows to balance the needs of users for smooth and
responsive user interactions with the interests of software providers to
reduce costs and use resources efficiently. The ability to change the ex-
ecution location of parts of the application logic at runtime means that
depending on client capabilities, network speed and the current load of
client and server, the code distribution can be optimized. In this demon-
stration, we showcase dynamic code migration for a sample e-commerce
web application. The demonstrator is designed according to our novel
DCM architecture and uses its infrastructure to automate compilation of
code fragments and manage the migration at runtime, leveraging stan-
dardized Web technologies like WebAssembly and WebSockets. Demo
participants will be able to interactively control the distribution of code
fragments via a control user interface in the browser and interact with
the e-commerce web application which was extended so that execution
locations of application logic can be observed life. This demo provides a
running prototypical implementation of the DCM architecture and aims
at inspiring discussions about new possibilities for the Web platform from
the widespread support of WebAssembly in all major browsers.

Keywords: Web Infrastructure · Software Architecture · Code Mobility
· WebAssembly · WebSockets.

1 Introduction

Code mobility in distributed systems has been a research interest for a long
time since the concept was coined in the most influential paper of ICSE’97 [1].
For web applications, moving code execution between client and server allows
to balance the needs of users for smooth and responsive user interactions with
the interests of software providers to reduce costs and use resources efficiently.
The ability to change the execution location of parts of the application logic
at runtime means that depending on client capabilities, network speed, and the
current load of client and server the code distribution can be optimized.

The wide support of WebAssembly1 provides the means for executing non-
JavaScript application logic on the client side. Thus, a potentially uniform pro-
1 https://www.w3.org/TR/wasm-core-1/

https://www.w3.org/TR/wasm-core-1/

2 S. Heil et al.

gramming language on client and server establishes a new platform on top of
which the vision of runtime code mobility becomes achievable for web applica-
tions, mitigating a main impediment of previous code mobility approaches [1].

Earlier Mobile Agents approaches in the web like HTML5 Agents [6] also
make use of platform uniformity, based on JavaScript/NodeJS, however. Con-
temporary liquid computing approaches like Liquid.js [2] and Disclosure [4] make
use of recent Web standards but are similarly specific to JavaScript. In contrast,
WebAssembly opens the web environment’s client side for arbitrary languages.
We follow the idea of Mäkitalo et al. [5] to leverage WebAssembly modules as
portable containers for code mobility, but unlike e.g. Blazor2 at runtime.

This paper provides a brief overview of our novel software architecture for
enabling the migration of application logic units between client and server side
of a web application at runtime and outlines the interactive demonstration of an
implementation of DCM in a Go-based e-commerce web application.

2 The DCM Architecture & Infrastructure in a Nutshell

This section summarizes the DCM architecture and supporting infrastructure
for Web Engineers’ adoption, shown in fig. 1. A more detailed description of
DCM, the related design challenges and design rationale can be found in [3].

Server

use

«Subsystem»
Web Application
(Server)

«Component»
Code Distributor (Server)

«Component»
Fragment Registry

instantiate

«Component»
Client Registry

read/update

«Component»
API Controller

call fragments,
deliver events,

call events

«Component»
Connection Handler

call/
return

«Component»
Fragment Executer

Plugins

save/load

«Component»
State Manager

Client

«Component»
Code Distributor (Client)

«Component»
Fragment Executer

WASM Modules

«Component»
State Manager

«Component»
Connection Handler

«Component»
Fragment Registry

«Subsystem»
Web Application (Client)static assets«Component»

App. Routing

load

CFD

save/load

call fragments/
deliver results

check
execution location

update

use

connect/
update

Fig. 1. Main Components and Interactions of the DCM Architecture. Supporting In-
frastructure is in Blue, Automatically Generated Artifacts in Green.

Specification and Compilation of Code Fragments. DCM allows Web En-
gineers to designate parts of application logic, Code Fragments, for migration at
2 https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

Enhancing Web Applications with Dynamic Code Migration Capabilities 3

runtime at the granularity of functions. A fragment is thus defined by its location
in the codebase and migration-relevant metadata. Web Engineers specify frag-
ments in a code fragment description (CFD). DCM infrastructure supports CFD
creation by automatically extracting metadata such as source code, imports,
function parameters/datatypes, through static analysis of the abstract syntax
tree. To turn fragments into executable binary artifacts loadable at runtime,
they are compiled as plugins for the server side and to WebAssembly modules
for the client side. Before compiler invocation, DCM infrastructure modifies the
codebase for dependency management and to enable redirection of control/data
flow at runtime. The resulting artifacts and DCM runtime environment are then
automatically deployed into the web application.

Dynamic Migration of Code Fragment Execution. At runtime, client
and server Code Distributor handle execution of compiled code fragments.
They keep track of available fragments and their state and handle fragment life
cycle and dynamic migration when requested via the API Controller’s REST
interface. Client-side fragments are executed as tasks via a pool of WebWorkers.
Client/Server communicate via WebSockets to synchronize incoming/outgoing
data flows and events. To redirect control & data flow, Fragment Executers
serve as proxies between the caller and the fragment code. Corresponding code
modifications were automatically made before compilation. Control flow events
are passed for fragment invocation/results. Data flow is forwarded and required
transformations when entering/leaving the WebAssembly modules and serializa-
tion in the WebSocket connection are performed by the DCM infrastructure.

3 Demonstration

We built an interactive demonstrator3 to showcase the DCM capabilities. As
shown in fig. 2, the scenario is a sample e-commerce application with basic arti-
cle list, shopping cart, price/discount calculation functionalities. The application
built according to the DCM architecture was extended with UI components to
make the migration of fragments at runtime visible and controllable. Whenever
application logic from a fragment is executed, an execution location indicator
highlights its execution location – server or client. Demo participants can view
the list of fragments and control their distribution via a dedicated fragment
distribution control, allowing them to change the location of each fragment at
runtime. By a second device or participants’ own devices, we also demonstrate,
that the fragment distribution can be chosen individually for each client, allow-
ing for optimization according to individual load and hardware capabilities. An
additional WASM Playground lets participants explore current corner-cases.

4 Conclusions & Future Work

DCM enables building web applications that can dynamically adapt execution
of application logic at runtime for each client-server pair to better use available
3 source code available at: https://github.com/heseba/dcm-interactive-demo

https://github.com/heseba/dcm-interactive-demo

4 S. Heil et al.

Fragment Distribution Control

Fig. 2. Interactive Demonstrator: DCM-enabled E-Commerce Application with Frag-
ment Distribution Control (center overlay) and Execution Location indicator (top left).

resources and balance users’ and software providers’ needs. This demo shows a
working example using W3C-standardized web technologies and providing inter-
active code distribution controls. It aims at furthering the discussion about the
Web platform in the light of new language-openness through WebAssembly.

Our future work targets the policy-based automation of fragment distribution
decisions based on measurements of load and hardware capability detection. A
second line of research focuses the combination of DCM with Web Components
to enhance capabilities of building micro frontends for dynamic workflows.

Acknowledgements The authors would like to thank Alexander Senger for his
valuable contributions to the implementation of the DCM demonstrator.

References

1. Carzaniga, A., Picco, G.P., Vigna, G.: Is Code Still Moving Around? Looking Back
at a Decade of Code Mobility. In: Proc. of ICSE’07 Comp. pp. 9–20. IEEE (2007)

2. Gallidabino, A., Pautasso, C.: The LiquidWebWorker API for Horizontal Offloading
of Stateless Computations. Journal of Web Engineering 17(6), 405–448 (nov 2019)

3. Heil, S., Gaedke, M.: DCM: Dynamic Client-Server Code Migration. In: Proc. of
ICWE 2023. Springer, Cham (2023)

4. Kim, J.Y., Moon, S.M.: Disclosure: Efficient Instrumentation-Based Web App Mi-
gration for Liquid Computing. In: Proc. of ICWE 2022. pp. 132–147. Springer (2022)

5. Mäkitalo, N., Mikkonen, T., Pautasso, C., Bankowski, V., Daubaris, P., Mikkola,
R., Beletski, O.: WebAssembly Modules as Lightweight Containers for Liquid IoT
Applications. In: Proc. of ICWE2021. pp. 328–336. Springer, Cham (2021)

6. Voutilainen, J.p., Mattila, A.l., Systä, K., Mikkonen, T.: HTML5-based mobile
agents for Web-of-Things. Informatica 40(1), 43–51 (2016)

	Enhancing Web Applications with Dynamic Code Migration Capabilities

