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Abstract. This article details the idea of Crowdsourced Reverse Engi-
neering (CSRE) by analysing three major challenges: (1) automatic task
extraction, (2) source code anonymization and (3) results aggregation and
quality control. We re-formulate the Reverse Engineering activity of con-
cept assignment as a crowdsourced classification task to exemplify these
challenges and describe suitable methods to address them. Our overview
on existing research of crowdsourcing showcases examples of successful
application in the field of Software Engineering and argues that Reverse
Engineering activities like Concept Assignment are likely to also bene-
fit from crowdsourcing by determining a high similarity in eight crowd-
sourcing dimensions to the microtasking model. Our experiments on the
crowdsourcing platform microworkers.com support this, producing 187
results by 34 crowd workers which classified 10 code fragments with decent
quality. We provide an extended analysis of the observed crowd workers’
behavior and report evidence of surprisingly high levels of engagement and
efforts undertaken by the crowd. Concluding our experiences, this article
indicates three open research challenges for future work.

Keywords: Reverse engineering · Crowdsourcing · Microtasking ·
Concept assignment · Classification · Web migration ·
Software Migration

1 Introduction

Software Migration to the Web is a crucial challenge for software developing
companies with legacy systems. Changing expectations of users towards modern
software pose new challenges for existing software systems that are not web-
based. These challenges are particularly rooted in the diversity of user interac-
tions of recent web applications. The continuous evolution of web technologies
and the termination of support for obsolete technologies furthermore increase
the pressure to modernize non-web legacy systems [7,26]. With web browsers
becoming the standard interface for many applications, web applications pro-
vide a solution to platform-dependence and deployment problems [4]. Software
developing companies are aware of these benefits and reasons for web migration.
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On the other hand, in particular Small and Medium-sized Enterprises (SMEs)
face difficulties when trying to commence a web migration [12].

Our problem analysis based on LFA1 problem trees identified a variety of
sub-problems which can be summarized under two main factors: doubts about
feasibility and doubts about desirability [13], which render SME-sized software
developing companies hesitant to migrate their existing software products to the
web. While we addressed doubts about desirability in [13], this work focuses on
doubts about feasibility, which are mainly originating in the danger of losing
knowledge throughout the migration process [7].

Small and medium-sized software providers often tailor their successful soft-
ware products specifically to a certain niche domain, resulting from years of
requirements engineering [21]. Therefore, the amount of valuable domain knowl-
edge from the problem and solution domain [18] such as models, processes, rules,
algorithms etc. encoded in the source code is vast. [26] Due to the paradigm
shifts introduced through webmigration – client-server separation in the spatial
and technological dimension [7], asynchronous request-response-based communi-
cation [4], explicitly addressable application states via URLs and navigation to
name but a few – redevelopment methods bears the risk of losing this knowledge.

The problem and solution domain knowledge in legacy systems, however,
is only implicitly represented by the source code and often poorly documented
[26,27]. Therefore, Reverse Engineering is required to elicit this knowledge, to
make it explicit and thus available for subsequent web migration processes. For
small and medium-sized enterprises, existing re-documentation approaches [14]
are not feasible since they cannot be integrated into day-to-day agile development
activities and require additional human resources. Therefore, we introduced an
approach based on in-situ source code annotations [11], allowing to enrich the
legacy source code by directly linking parts of code with explicit representations
of the knowledge which is contained in them. Web engineers are enabled to
reference the elicited knowledge in emails, wikis, task descriptions etc. and to
jump directly to their definition and location in the legacy source code, using
a web-based annotation platform. The identification of domain knowledge in
source code is known as Concept Assignment [6].

Through integration into the daily development activities of the small and
medium-sized enterprise, concept assignment supported by our platform allows
to incrementally re-discover and document the valuable domain knowledge. How-
ever, the concept assignment activity itself is manual. This requires a high
amount of effort and time, in particular taking into account the limited resources
of small and medium-sized enterprises. Moreover, the results of manual concept
assignment depend solely on the migration engineer executing the activity.

The concept assignment process involves reading a part of legacy source
code, selecting a relevant portion called region of interest (ROI) and determin-
ing the type of knowledge which this ROI represents, before further manual or
automatic code analysis can be applied to extract model representations of the
knowledge. This process can be considered a classification task. Crowdsourcing
has been successfully applied to solve various classification tasks in areas like

1 Logical Framework Approach, cf. http://ec.europa.eu/europeaid/.

http://ec.europa.eu/europeaid/
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image or natural language text classification. Also in the context of software
engineering, crowdsourcing methods have been reported successful, in particular
on smaller tasks without interdependencies [17,25], like the above. Thus, in this
article we explore Crowdsourced Reverse Engineering (CSRE) through experi-
mentation with the reverse engineering activity of identifying different types of
knowledge in legacy codebases. This article is an extended and revised version of
our previous work in [10]. Our experiments identified three main challenges. This
article details these challenges, reports on how we addressed them and provides
the results of our evaluation. Since these challenges are not specific to concept
assignment, which is used as an example for this work and can be encountered
when applying crowdsourcing to other reverse engineering activities.

Challenges of the Application of Crowdsourcing in Reverse
Engineering:

1. Automatic Extraction and Creation of Crowdsourcing Tasks from the Legacy
Source

2. Balancing Controlled Disclosure of Proprietary Source Code with Readability
3. Aggregation of Results and Quality Control

Existing crowdsourcing platforms require suitable classification tasks. These
can be derived by splitting the legacy source code into fragments which can then
be classified by the crowd workers. The fragment size has to balance context with
classification, i.e. they should be large enough to provide sufficient context for a
meaningful classification and small enough to allow for a unambiguous classifi-
cation and a good overall recall in relation to the entire code base. Moreover, the
legacy source is a valuable asset of the company. Thus, disclosure of code frag-
ments on a public crowdsourcing platform to a potentially unknown audience
needs to be controlled.

Competitors should be prevented from identifying the authoring company, the
concrete software product or even the application domain, in order to not allow
them to gain insights on the software product or – as worst case – replicating parts
of it. On the other hand, a suitable anonymization method needs to be balanced
with the source code readability. Code which is produced by traditional code obfus-
cation algorithms is intendedly hard to read [8]. This would jeopardize achieving
high quality classification results by the crowd workers. Aggregating the crowd
workers’ classification results with effective quality control measures is therefore
a key challenge. Fake contributions need to be filtered and contradicting classi-
fications have to be resolved. While manual quality control by the crowdsourcing
company would be effective, the advantage gained by crowdsourcing would be mit-
igated by the high manual effort to ensure a decent classification quality.

This article reports on our experiences when applying crowdsourcing in
the reverse engineering domain. We outline the CSRE approach in Sect. 2 and
detail the three challenges of automatic task extraction in Sect. 3, source code
anonymization in Sect. 4 and quality control and results aggregation in Sect. 5.
In Sect. 6, we position CSRE against existing work, report on and analyse the
results from our experiments in Sect. 7 and conclude the article with an outlook
on open issues in Sect. 8.
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2 The CSRE Approach

To demonstrate the application of crowdsourcing in the domain of reverse
engineering, we experimented with the reverse engineering activity of Concept
Assignment. The original problem of concept assignment has been defined by
Biggerstaff et al. in [5]. It aims at reconstructing “human-oriented expressions
of computational intent” by identifying the concepts and assigning them to “the
specific implementation structures within the program” [5]. The concept assign-
ment problem is “the problem of discovering these human-oriented concepts and
assigning them to their realizations within a specific program or its context” [5].

Concept assignment research has investigated a variety of different concepts:
from concrete domain concepts [6] to features [18] to abstract concerns [9]. An
important distinction is between problem domain concepts and solution domain
concepts: while problem domain concepts (e.g. processes, rules, business enti-
ties) originate in the domain for which the software was built, solution domain
concepts (e.g. algorithms, patterns) are from the domain of programming [18].

In Fig. 1, we reformulated the concept assignment process [6] as a classifica-
tion problem: first the source code is read (for manual concept assignment as in
[9]) or parsed (for automatic methods like [18]), regions of interest are identified
and the represented concept determined. Optionally, this is followed by manual
or automatic extraction of a formal representation of the concept (e.g. in UML,
BPMN) to allow subsequent use of model-driven methodologies.

Fig. 1. Concept assignment process reformulated as classification.

Manual concept assignment often is a lexical search-based activity [24] using
identifiers [18] and can be supported by tools like ConcernTagger [9] or Annota-
tion Platform [11]. Recent automatic concept assignment approaches are Infor-
mation Retrieval (IR) techniques employing Natural Language Processing (NLP)
methods [24]. The filtering technique in [1] applies NLP analysis to identifiers
of classes, methods and attributes to extract domain ontologies, [18] presents
an approach based on Latent Semantic Indexing, [24] uses action-oriented iden-
tifier graphs. The possibility of applying crowdsourcing to concept assignment
has not been considered yet. Thus, we use concept assignment as basis for our
experimental application of crowdsourcing in reverse engineering.

The crowdsourcing-based classification process for concept assignment in
legacy code bases presented in Fig. 2 involves three roles:
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Fig. 2. Crowdsourcing-based source code classification process.

1. Migration Engineer is the person conducting the web migration
2. Annotation Platform is a system role that represents a web migration support

platform [11] for the concept assignment
3. CS Platform represents a suitable crowdsourcing marketplace, allowing to

post an open classification call to the crowd

The process starts by the migration engineer (1) defining the scope of code to be
classified on the legacy code base. This scope can be defined in terms of a subset
of concrete source files, software components (project/solution files) or the entire
code base. The annotation platform (2) automatically extracts code fragments
for classification as described in Sect. 3. The extracted fragments are (3) pre-
processed to achieve the intended anonymization properties, which we describe
in Sect. 4. For each of the anonymized code fragments, the annotation platform
(4) deploys classification tasks in the CS Platform. The CS Configuration data
passed to the CS Platform to set-up the tasks includes a brief description of
the concept assignment classification task, a URL pointing to the classification
view for crowdworkers (Fig. 3) in the annotation platform, the requirements
for selecting suitable crowd workers and the reward configuration. Matching
crowdworkers according to the crowdworker requirements are (5) presented a
textual description of the available categories for classification, following our
ontology for knowledge in source code [11]. Depending on the terms of use of
the CS platform and its technological capabilities, the URL of the crowd worker
view is either presented as a link or loaded in the CS platform using an iframe.

The crowd worker view displays the code fragment to be classified and the
selection control of possible categories to the crowd worker in order to support
and capture his classification result (6). In addition, it shows a list of source
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Fig. 3. Crowd worker view [10].

code references to allowing the crowdworker to review those parts of source code
which are referenced in the code fragment. (7) User-specific URLs and temporary
tokens are employed to capture the results per crowdworker and authenticate
access to the annotation platform. In (8), the classification results are aggre-
gated across the different crowdworkers and quality control measures are applied
according to Sect. 5. The filtered results can then be (9) automatically included
in the annotation platform, or marked for further review by the migration engi-
neer, allowing to accept or reject them. Finally, the annotation platform (10)
notifies the CS platform to reward the participating crowd workers according
to the reward policy. The following three sections provide details about CSRE’s
components addressing the main challenges raised in the introduction.

3 Classification Task Extraction

3.1 Problem Analysis

According to [25], typical tasks for crowdsourcing, called Micro-tasks, are char-
acterized as self-contained, simple, repetitive, short, requiring little time, cogni-
tive effort and specialized skills. Of these characteristics, classification of code
fragments as described in Sect. 2 matches the first five. Classification results
are not dependent on other classification results. The classification act itself
is a simple selection from a list of available options. The classification activ-
ity is highly repetitive and a single classification can be achieved in relatively
low time. The last two characteristics are slightly different: The cognitive effort
required is higher compared to other successfully crowdsourced classification
tasks like image classification. To some extent, specialized skills are required
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since the crowd workers have to have a sufficient capability to read and under-
stand source code in the legacy code base’s programming language. However,
only a basic understanding of programming and limited knowledge of the pro-
gramming language are sufficient to read and understand enough of a given code
fragment to determine the correct classification. Thus, the skill requirements are
not extremly high and the concept assignment classification activity is suitable
for a much wider range of crowd workers compared to crowdsourcing the entire
development of an application as in [22].

To automatically extract micro classification tasks from the legacy code base,
it has to be divided into code fragments for classification. These are identified
through structural code analysis. Suitable methods serving this purpose must
have three essential classification task extraction properties:

1. Automation
2. Legacy language support
3. Completeness of references

Automation. To perform the analysis and to carry out the identification of
relevant code fragments for classification, no additional user interaction should
be required by a suitable extraction method.

Legacy Language Support. Since structural code analysis is specific to the
programming language, the method should support common programming lan-
guages. According to IEEE Spectrum2, the ten most widely used programming
languages are: Python, C++, C, Java, C#, PHP, R, JavaScript, Go and Assem-
bly. While Go is a relatively new language (appeared in 2009) and Javascript
has only recently seen an increased use in the context of web applications, R is
a language mainly used for statistics and data analysis. These languages are
therefore not considered relevant for a web migration. Typical languages found
in legacy software to a larger extent include C, C++, Java and Assembly and
should therefore be supported.

Completeness of References. To provide a crowd worker with sufficient infor-
mation to properly categorize a code fragment, the control and data flow must
be understandable from the code provided. To display this information to the
crowd worker, the extraction method must include information about source
code that is referenced in the code fragment.

3.2 Solution

We analyzed three groups of approaches for classification task extraction. Docu-
mentation tools are originally used to automatically create source code documen-
tation. Existing documentation tools can be re-used for task extraction, however,
instead of developing specific extraction tools. To create the documentation, the

2 https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-langua
ges.

https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
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structure of the source code is analyzed and transformed into representation for-
mats. Thus, this group of methods allows to identify structural properties of a
source code. Syntactic analysis tools explicitly analyze code regarding its struc-
tural properties. Two different types exist: regular-expression-based and parsers.
Regular expressions are used to search for patterns in texts. Thus, a suitable set
of regular expressions allows identifying relevant code fragments for classifica-
tion. Parsers create representations of the syntactical structure of a program,
based on abstract syntax trees, describing the structure and sequence of state-
ments of the program code. Similar to documentation tools, Syntax highlighting
tools generate custom representations of the structure of source code in order
display syntax highlighting in editors and IDEs.

The applicability of these three groups for the extraction of classification
tasks was systematically investigated by evaluating them against the three afore-
mentioned essential properties as requirements. Production-grade implementa-
tions of documentation tools exist for most programming languages. Referenced
parts of source code are completely traceable, ensuring good understanding for
crowd workers. Through the capability to configure the extraction process by
command line parameters, automation is easily achieved. Being a standardized
means of extracting information from text, regular expressions are supported
by all current programming languages and can thus be employed for automatic
extraction, as part of a tailored extraction program. However, tracing source
code references can would require very high effort and complex iterative use
regular expressions. On the other hand, parsers allow to track source code ref-
erences by analyzing data and control flow and are available for most program-
ming languages. The analysis results generated in the parsing process, however,
are either not exportable or they are available as graphical representations only.
This makes further processing difficult. Therefore, using parsers in an automated
extraction process is significantly limited. While syntax highlighting tools allow
the identification of code fragments and internally create a representation of
code structure, exporting these structure file to elicit source code references is
restricted to certain platforms. As a result, their applicability is limited.

Based on the above considerations and supported by an internal feasibility
study by students, we decided to use documentation tools as basis for the fully
automated classification task extraction. The implementation runs “Doxygen”3

on the legacy code base and parses the generated documentation to identify
relevant code fragments and referenced source code.

4 Source Code Anonymization

4.1 Problem Analysis

The crowdsourcing paradigm implies that work is not assigned to individual
workers, but instead crowd workers respond to an open call. The group of workers
is potentially large and they are unknown to the company. [15] Thus, posting a

3 https://www.stack.nl/∼dimitri/doxygen/.

https://www.stack.nl/~dimitri/doxygen/
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task on a crowdsourcing platform is equivalent to publishing the task contents,
bearing the risk that competitors access the code fragments from the crowd tasks
and use them uncontrolledly.

Proper source code anonymization means are therefore relevant to allow com-
panies to successfully employ CSRE. Code obfuscation techniques adapt an exist-
ing source code to make it harder to understand/reverse engineer, while main-
taining the original functionality [8]. Thus, they would provide a partial solution
to prevent unintended distribution of a company’s valuable source code. How-
ever, the readability is also severely impacted. [8] assesses the impact of code
obfuscation techniques on the understandability through human readers.

In the context of CSRE, the challenge of source code anonymization is to
balance information disclosure with readability: While a suitable anonymization
method sufficiently modifies the code fragments to prevent unintended use, it has
to maintain readability to a level that allows crowd workers to achieve sufficient
understanding of the code to perform the reverse engineering task.

The following anonymization properties reflect this necessary balance. A
suitable anonymization method must:

1. Prevent identification of software provider, software product and application
domain

2. Maintain control flow and all information relevant for classification
3. Avoid negative impact on readability of the source code

We analyze these three anonymization properties in the following. This section
is not structured per property because achievement of any of the properties
influences the others. Obfuscation techniques employing code optimizations like
inline expansion4 or adding artificial branches to the control flow (cf. opaque
predicates [3]) alter the syntactic sequence of expressions. As the control flow is
not maintained, these obfuscation techniques are disregarded.

Identifier renaming has shown good results in source code obfuscation [8].
Identifiers are, however, not the only constituents of code containing information
relevant for the identification of software provider, software product or applica-
tion domain (identification information in the following). The three different
loci of identification information are: identifiers, strings and comments. While
traditional code obfuscation has to produce identical software from end users’
perspective, anonymization for classification can apply modifications to string
contents: The anonymized source code is only displayed to crowd workers for
reverse engineering, but not used to compile into software and used by end
users.

Another difference to traditional identifier renaming, which typically yields
intendedly meaningless random combinations of characters and numbers, is that
source code anynomization replacements in the context of CSRE have to suffi-
ciently maintain readability and information content. The näıve approach would
be dictionary-based replacements: creating custom blacklists of words and defin-
ing mappings to their respective replacements. However, completeness of the

4 Replacing calls to usually short functions by their body.
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anonymization would highly depend on the completeness of theses dictionaries
and the approach requires high manual effort. This is not feasible for larger
code bases as found in the professional software production context of small and
medium-sized enterprises.

According to the two main origins of information in identifiers, strings and
comments, research distinguishes problem and solution domain knowledge [18].
Identification information is found in identifiers or words in strings originating
from the problem domain. Solution domain knowledge represents classification
information, i.e. information relevant for classifying a code fragment. An ideal
anonymization approach replaces all identification information while maintaining
all classification information. Transformation of the domain model would allow
this. For a legacy system, however, this model is typically not available [26].

4.2 Solution

We use static program analysis to extract the Platform Specific Model (PSM),
and a list of all identifiers. Based on results from the static program analy-
sis, we automatically generate a replacement mapping for each of the identi-
fiers. Our anonymization algorithm (cf. Algorithm1) generates these replace-
ment mappings based on the identifier type. It distinguishes three basic types
of identifiers: functions, variables and classes. For example, identifiers rep-
resenting class names like BlogProvider are mapped to Class_A, methods
like Blogprovider.Init() to identifiers like Class_A.Method_A(). Relation-
ships between concepts are understandable to human readers through relation-
ships in natural language between corresponding identifiers. Through identifier
renaming, these relationships get lost. To improve understanding, simple rela-
tionships like generalization and class-instance can be expressed in the gener-
ated identifiers to maintain a certain level of semantics. For example, a class
class Rectangle: Shape can be replaced as Class_B_extends_Class_A, an
instance variable Shape* shape = new Shape() can be renamed to instance of
Class A. Representing further relationships like composition or aggregation
would require an existing domain model. Prior creation of a domain model con-
tradicts the aim of concept assignment, therefore these are not considered.

The pre-processing phase prepares the source code for the following renam-
ing phase. Due to the complexity of Natural language texts contained in com-
ments can be complex. Appropriate modifications would require high effort,
thus, comments are stripped from the source code. Likewise, strings contents
can contain complex natural language texts, potentially containing product or
company names. Therefore, they are replaced by "String". In the renaming
phase, remaining strings and identifiers are replaced according to the mapping
described above.

Assessing the readability of the resulting anonymized code, we conducted a
brief validation experiment. Six employees of an SME-sized software provider
(Age min 22, max 50, avg 32.7; Experience min 6, max 29, avg 13.2 years) rated
the readability of 10 anonymized source code fragments (length min 7, max 57,
avg 27.4 LOC, cf. Sect. 7.1) on a five-level Likert scale (measuring agreement
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between 1 and 5 to “The code is easy to read”). Expectedly, traditional obfus-
cation was rated near-unreadable (0.7) whereas CSRE (3.7) performed slightly
better than the näıve approach (3.2).

Algorithm 1. CSRE Anonymization Algorithm.

Input: Source Code S, Platform Specific Model PSM , Identifier List I
Output: Anonymized Source Code

1 m(i) =

⎧
⎪⎨

⎪⎩

“instance of ” + m(c) if i instance of c

genericName(i) + “ extends ” + m(s) if i subclass of s

genericName(i) else

2 replace Strings in S by “String”
3 remove comments from S
4 replace all identifiers i ∈ I in S with m(i)
5 return S

5 Results Aggregation and Quality Control

5.1 Problem Analysis

Crowdsourcing produces a set of results from different and unknown contribu-
tors. These results may even be contradicting. The quality of results from CSRE
must, however, justify the resources invested by the company. Ensuring quality of
crowdsourced results is a challenge. [19,25,28] Thus, proper results aggregation
and quality control is crucial.

For the classification task described in Fig. 1, the amount of correctly classi-
fied code fragments should be as high as possible, i.e. good precision is required.
The precision depends on several factors: Crowd workers sometimes provide fake
answers to minimize their effort, leading to poor quality. Different experience lev-
els of the crowd workers can lead to different classification results on the same
code fragment.

To aggregate results and achieve good quality, several quality-control design-
time approaches (Worker selection, Effective task preparation) and quality-
control run-time approaches (Ground truth, Majority consensus) (cf. [2]) are
considered.

Quality Control and Results Aggregation Properties:

1. Worker selection
2. Effective task preparation
3. Ground truth
4. Majority consensus

5.2 Solution

In the following, we outline the combination of approaches used to achieve good
results quality using the schema in [2].
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Worker Selection. Since experience of the crowd workers highly impacts qual-
ity of crowdsourcing results, we use reputation-based worker selection [2]. Crowd
workers are rated based on their contributions to CS tasks in most crowdsourcing
platforms. Their reputation is based on these ratings. Reputation-based worker
selection allows only crowd workers above a specified reputation threshold to
select a CS task. In our experiments on the bespoke [17] crowdsourcing platform
microWorkers.com5, only workers from the “best workers” group participated.

Effective Task Preparation. The reverse engineering task has to be described
clearly and unambiguously. The task design must keep the effort for fake contri-
butions similar to correctly solving the task. This is known as defensive design
[2]. In our experiment, crowd workers are provided with a brief description of the
classification task and the available classifications with examples. At any step of
the process, they can access this description.

The crowd worker view (cf. Fig. 3) displays the code fragment and references
(cf. Sect. 3) with syntax highlighting, the available categories and a text input in
which a brief explanation must be given to provide reasons for the classification.
The minimal explanation length of 50 characters aims at reducing or at least
slowing down fake contributions and allows for filtering during post-processing,
e.g. filtering identically copied explanations. The compensation policy combines
financial and non-financial rewards: For quality contributions, crowd workers
receive a financial reward of 0.30 USD (platform average during the experiment)
and a positive rating of their contribution as non-financial reward, adding to
their reputation.

Ground Truth. To assess the quality of contributions by crowd worker, we
employ the ground truth approach: Classification tasks with known correct
answers form the ground truth. In this way, individual worker can be assessed
based on the correctness of answers for these test questions. This information
determines the individual user score S(wi) ∈ [0, 1] for each crowd worker wi ∈ W
by comparing the amounts of correct classifications C+

wi
and false classifications

C−
wi

as in Eq. (1). It can be used as weight factor during results aggregation.

S(wi) =
|C+

wi
|

|C+
wi | + |C−

wi |
(1)

Majority Consensus. We employ the majority consensus technique to aggre-
gate the crowdsourcing results. For each code fragment to be classified, the
classifications C ⊂ W × A are tuples (wi, ck) of a crowd worker wi ∈ W and the
class ck ∈ A which the crowd worker selected. The resulting voting distribution
V : A �→ [0, 1] is calculated for all possible classes ci ∈ A as in Eq. (2):

V (ci) =

∑

(w,c)∈C|c=ci

S(w)

∑

(w,c)∈C

S(w)
(2)

5 https://microworkers.com/.

https://microworkers.com/
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The aggregated result c∗ of all crowd classifications is defined by the highest
voting value as in Eq. (3):

c∗ = arg max
c∈A

V (c) (3)

For more control, an overview with the result distributions and explanations was
implemented, so that edge cases without clear majority can be found easily and
decided (cf. Figs. 4 and 5).

Fig. 4. Crowdsourcing results statistics view [10].

6 Related Work

In this section, we provide a brief overview on crowdsourcing research in reverse
engineering and software engineering and position our CSRE approach accord-
ingly (cf. Table 1).

6.1 Crowdsourcing in Reverse Engineering

Research applying crowdsourcing to reverse engineering is sparse. CrowdSource
by Saxe et al. [23] is an approach for malware classification combining NLP with
crowdsourcing. The initial data is provided by the crowd, the actual classification
work, however, is performed using statistical NLP methods like full-text indexing
and Bayesian networks. Based on the vast natural language corpus available on
question and answer websites like StackExchange, CrowdSource creates a sta-
tistical model for malware capability detection. The model correlates low-level
keywords like API symbols or registry keys with high-level malware capabilities
like screencapture or network communication. In contrast to CSRE, Crowd-
Source follows a passive crowdsourcing [16] model: Crowdsourcing is employed
only to generate the required input probabilities for the Bayesian model and not
directly for performing the classification work.
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Fig. 5. Crowdsourcing result details view for migration engineer [10].

Table 1. Overview on existing crowdsourcing approaches in reverse engineering and
software engineering.

Approach Field CS for Act./pass. CS Model

CrowdSource [23] Malware classification Initial text corpus Passive Sharing and reuse

CrowdDesign [19] Component

development

Programming Passive, active Peer production,

microtasking

CrowdAdapt [20] HCI Adapting and

evaluating layouts

Passive Sharing and reuse

CrowdDesign [28] HCI Partial UI design Active Microtasking

(Stol 2014) [25] Modeling, testing Asset modeling, test

automation

Active Microtasking

(Satzger 2014) [22] Software development Software development Active Collaborative CS
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6.2 Crowdsourcing in Software Engineering

Crowdsourcing has received wider consideration in software engineering. For
instance, [19] presents a platform for crowd-supported creation of composite
web applications. The web engineer creates the design of the web application as
mashup based on information and interface components. Nebeling et al. com-
bine a passive with an active crowdsourcing model: Sharing and Reuse is used
in a community-based component library. Public components can be used by
the web engineer to compose the web application. Active crowdsourcing is used
for creating new components. The web engineer defines characteristics of the
required component and posts an open call to a paid, external crowd. Improving
the technical quality of the crowdsourced solution candidates is reported as one
of the main issues. The survey in [17] provides a good overview on crowdsourcing
in software engineering, showing increased research interest since 2010.

In the HCI field, crowdsourcing was successfully employed to adapt existing
layouts to different screen sizes [20]. CrowdAdapt leverages the crowd for creating
adapted web layouts and to select the best layout variants. It focuses on crowd-
driven end-user development web layout tools. Crowdsourcing primarily serves
as a means of exploring the design space and to elicit design requirements for
various viewing conditions. CrowdAdapt, unlike other CS approaches in software
engineering, uses unpaid crowd work. Unpaid crowd work can be successfully
employed in HCI contexts due to the high number of users indirectly providing
feedback through their interactions.

Similar to CSRE, CrowdDesign [28] employs the microtasking crowdsourcing
model. To solve small user interface design problems, CrowdDesign uses paid
crowd workers from Amazon Mechanical Turk. It focuses on diversity, i.e. for
a set of decision points in the design space, CrowdDesign creates various and
diverse solution alternatives. Early results report a high diversity, but only few
crowd-created solutions achieved sufficiently high quality. In contrast, for CSRE,
quality is the most relevant property. Diversity in the results is not intended.

Industrial case studies on CS in software development like [25] indicate that
software development activities of lower complexity and relative independence
are the most successful for CS. However, even more complex software develop-
ment tasks can benefit from the lower costs, faster results creation and higher
quality of successful crowdsourcing application. The case study considers two
areas: test automation and front end modeling. Similar to CSRE, [25] focuses
on the perspective of an enterprise crowdsourcing customer. Quality is one of
the main problems as seen by a significant number of defects in the produced
results. Stol et al. report on continuity problems since new crowd workers lack
the experience from their predecessors and even re-introduce previously fixed
bugs. From an enterprise perspective, they conclude that applicability of CS in
software engineering is limited to self-contained areas without interdependencies,
such as GUI design.

Latoza et al. [15] identify eight foundational orthogonal dimensions of crowd-
sourcing for software engineering : crowd size, task length, expertise demands,
locus of control, incentives, task interdependence, task context and replication.
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Existing successful crowdsourcing models like peer production, competitions and
microtasking are characterize according to these dimensions. The CSRE Clas-
sification described in this article closely matches the microtasking model, as
shown in Fig. 6. The differences are in only two of the eight dimensions: while in
microtasking expertise demand is generally low, we consider it low to medium for
source code classification. The amount of information about the entire system
required by the worker (task context) is zero for microtasking, compared to low
for the classification. The high similarity makes it likely that microtasking can
be similarly successful on the small, independent and easily replicatable source
code classification tasks as it already has proven in software testing. Both ben-
efit from the high number of workers and the parallel execution of tasks. The
key benefit of reduced time to market through crowdsourcing can be achieved
for models with two characteristics: work must easily be broken down into short
tasks and each task must be self-contained with minimal coordination demands
[15]. CSRE meets both of these characteristics.

Distributed software development abstracting the workforce as crowd is
described by Satzger et al. [22]. The public crowd is found on crowdsourcing
platforms, the private crowd consists of company employees. The approach aims
at collaborative crowdsourcing of software in enterprise contexts. It proposes to
start with requirement descriptions in customer language. These are transformed
into developer crowd tasks by a software architect. Developed collaboratively,
the tasks are delegated to private and public crowds. Tasks can recursively be
divided into smaller tasks and delegated to the crowd by crowd workers. The
iterative development process tries to combine properties and artifacts from agile

Crowd Size

Task Length

Exper se Demands

Locus of Control

Incen ves

Task Interdependence

Task Context

Replica on

Microtasking CS RE Classifica on

Fig. 6. Comparison of microtasking and crowdsourced reverse engineering (CS RE)
classification [10].
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development methodologies with collaborative crowdsourcing. Similarly, CSRE
integrates with agile development, however, due to the nature of the reverse
engineering classification task, it is not collaborative.

7 Evaluation

7.1 Experimental Design

We automatically extracted code fragments from BlogEngine.NET6, an open-
source ASP.NET-based blogging platform and randomly selected 10 of them.
These 10 code fragments range from 7 to 57 LOC, on average 25.4 LOC. Using
the following 8 categories from our source code knowledge ontology [11], we
classified each of them manually:

1. Business Process
2. Algorithm
3. Persistence & Data Handling
4. User Interface & Interaction
5. Explanatory
6. Rule
7. Configuration
8. Deployment

Extending the 3 basic categories typically considered (presentation, application
logic and persistence [7]), they provide a more fine-grained distinction of knowl-
edge in source code. The implementation of CSRE was integrated into our exist-
ing source code annotation platform [11]. Crowd worker views with authentica-
tion mechanisms, classification task extraction based on doxygen (see footnote 3)
and integration with crowdsourcing platform microWorkers were implemented.

Using focus and blur events, the crowd worker view tracks the time spent on
it. The classification campaign ran for 14 days only with workers from the “best
workers” group. 0.30 USD of financial reward were paid per 3 classifications.

7.2 Results

34 unique crowd workers contributed 187 classifications on our test data set.
Table 2 shows the results. CF are the ten code fragments, Consensus indicates
the result of the consensus voting. The numbers of classifications per category
are stated in the categories cells. Bold values are the maxima, which are the basis
for the majority consensus. Grey background marks the correct classification of
the code fragment. Table 3 presents statistics to further analyze the results. |C|
is the number of classifications and |W | the number of crowd workers. Note that
the crowd worker and classification numbers differ due to multi-selections. The
code fragment length in LOC is stated in l, Σt reports the overall time spent,
t is the average time. Times are reported in seconds. The error rate fe (cf. Eq.
(4))
6 http://www.dotnetblogengine.net/.

http://www.dotnetblogengine.net/
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fe =
|C−|
|C| (4)

is the ratio of false classifications C− to all classifications C of a code frag-
ment. To investigate the degree of (dis-)agreement between the crowd worker
classifications, we include entropy E (cf. Eq. 5)

E = −
k∑

i=1

fi lg fi (5)

and normalized Herfindahl dispersion measure H∗ (cf. Eq. 6)

H∗ =
k

k − 1

(

1 −
k∑

i=1

f2
i

)

(6)

based on the relative frequencies fi of the classifications in the k = 8 classes.
E and H∗ indicate the disorder/dispersion among crowd workers: a unanimous
classification result yields E = H∗ = 0. The higher the disagreement, the more
different classifications, the closer E and H∗ get to 1. Therefore, they are indi-
cators of the classification certainty across the crowd workers. On average, 16
crowd workers created 18.7 classifications per code fragment.

7.3 Discussion

The average error rate of 0.655 seems high. With majority consensus, however,
7 of 10 code fragments were correctly classified. The minimum error rate was
.25 on fragment B and the maximum 1 for fragment I. Provided a small exper-
tise variation of the participating crowd workers, this indicates differences in
the difficulty (fragment I was one of the longest) and the understanding of
the categories. Rule was the most frequent classification (23.5%), Persistence
& Data Handling (21.9%) s, Deployment the least voted (5.3%). No majorities

Table 2. Experimental results.
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Table 3. Descriptive statistics.

CF |C| |W | l Σt t fe E H∗

A 24 19 18 2822 122 0.4167 0.6113 0.6906

B 16 16 20 2531 158 0.25 0.3053 0.4427

C 10 10 40 1128 112 0.6 0.6160 0.8

D 23 21 8 3033 131 0.7391 0.7402 0.8948

E 22 18 7 2580 117 0.5909 0.7228 0.8448

F 19 15 28 2857 150 0.6316 0.6146 0.8064

G 15 13 57 3225 215 0.8667 0.6891 0.8395

H 25 21 24 5249 209 0.52 0.6541 0.7893

I 17 13 40 1917 112 1 0.6504 0.7920

J 16 14 12 3393 212 0.9375 0.7902 0.9115

(a) Classification Time (s) (b) Explanation Length (char)

(c) Length-Time Ratio (cps) cut at 30 (d) Avg. Explanation Distances

Fig. 7. Classification time and explanation length 1-dimensional distributions.

were achieved for Business Process and Explanatory, indicating that they might
not be clear enough for the crowd workers. All other categories were correctly
classified by the respective majorities.

Average entropy is 0.639 and average Herfindahl dispersion measure 0.757,
their minima co-occur with minimal error rate, their maxima with the second-
highest fe. We found a significant (α = 0.05) positive correlation (Pearson’s
ρ = 0.724, p = 0.018) between error rate and entropy and between error rate
and Herfindahl dispersion measure (ρ = 0.757, p = 0.011), i.e. the more crowd
workers vote one category, the less likely it is a wrong classification. No clear
majorities for wrong classifications were observed. This supports the basic crowd-
sourcing principle “wisdom of the masses” and the majority consensus assump-
tion, that majorities are indicative of correct answers.

Our experiment did not show correlation between code fragment length and
classification time (cf. also Fig. 8). This indicates influence of other variables
and can be interpreted by assuming different levels of difficulty/clarity of the
classification. Taking additionally correctness into account, correct classifications
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(a) correct and wrong

(b) correct only (c) wrong only

Fig. 8. Classification time and explanation length (log scaled). (Color figure online)

showed less time outliers7 than wrong classifications. This can be interpreted that
longer classification time or longer explanations are indicative of uncertainty,
leading to wrong classifications in most observed cases. Most of the outliers
in Fig. 8c were Persistance & Data Handling code fragments, which was the
second most frequently voted category and indicating, that the formulation of
this category is not clear enough.

To further analyze the work of the crowd workers, we consider the distri-
butions of time and explanation length, as well as derived length-time ratio
and average explanation similarity per worker as shown in Fig. 7. Time median
was 117.5 s, but the observed times varied widely: the inter quartile range was
IQR = 143.25 s while upper outliers reached almost half an hour (1606 s). With
the lower quartile at 65 s and min time 6 s, the relatively low times show that
the tasks were formulated appropriately for microtasking, but also point to fake
contributions as described below. Longer times, however, do not imply better
accuracy as all but one time outlier in Fig. 7a belonged to C−. Results of one
specific crowd worker showed suspiciously identical time measurements (3×14 s,
3 × 33 s, 3 × 515 s), with identical explanations in all three groups which most
likely resulted from the use of a record-and-replay script.

7 We use Q3 + 1.5IQR as outlier threshold in this article.
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Explanation lengths (cf. Fig. 7b) ranged between 51 and 1017 characters
(median d̃ = 119) and were relatively close (IQR = 100.5) to the min thresh-
old of 50 chars. Also, the lower quartile of 76.25 chars and outliers for time and
length only appearing above the third quartile show that most of the workers
wrote rather short explanations in short time. Figure 8 shows explanation length
and time in relation, with correct classifications in green and wrong in red.

Time and explanation length distributions revealed that some crowd workers
tried to gain the reward quickly through fake contributions. To identify these
unlikely fast classifications, we calculated the length-time ratio in characters per
second (cps). As shown in Fig. 7c, within a range of 0.13 to 61.2 cps, most of the
values are distributed very closely (IQR 0.96 cps) around a median of 0.94 cps.
The 20 outliers are likely to have copied texts. Analysis of the contents showed
that these copies were most often copies of own previous explanations and some-
times from the task description. Since time does not only include writing time
for justifications, but also time for source reading, understanding, deciding and
selecting the classification, very high length-time ratios were only reachable if
also little time was spent for thorough consideration, resulting in only 4 of 20
outliers belonging to C+. Even when assuming fast thinking and typing capa-
bilities, speeds are not likely to exceed the upper level of 16 cps measured at
competitions8. However, 7 crowd workers exceeded this level. Manual analysis
of explanations of the outliers determined the fastest worker who did not copy
text and classified correctly at approx. 6.6 cps. The upper quartile at 1.63 cps
shows that the vast majority of workers produced results in reasonable time.

To further identify workers who tried to complete the tasks very quickly
through copying, we calculated average similarity of explanations per user using
pairwise Levenshtein distance. The average distances range from 39 to 287 and
are concentrated (IQR = 54.5) around a median of 83.8 (cf. Fig. 7d). Identical
copies (distance 0) were received from 10 of 34 (29.4%) crowd workers, but the
min average of 39 indicates that crowd workers did not exclusively copy. Note
that 7 workers provided only one classification and could thus not copy their own
texts. When normalized with the average explanation length, two workers had
even less than 50% relative changes, copying most explanations with only minor
adaptions. Manual inspection of crowd worker responses furthermore showed
that 3 of 34 replied exclusively with code in their explanations, indicating a
wrong understanding of the task.

In contrast to these negative cases, we also observed very thorough workers:
Fragment J was split-voted as Persistence/Deployment. The explanation texts
argued that J is related to persistence because the fragment is part of a class
related to persistence. This observation was very interesting, because our dataset
did not include the entire class. Thus, several crowd workers looked up the
sample source code on the internet and read also the surrounding parts in order
to classify. This level of active engagement and investment of time by the crowd
workers to complete their task positively surprised us.

8 cf. http://www.intersteno.org/.

http://www.intersteno.org/
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In spite of the cases of low quality and fake contributions reported above
– which are a known characteristic of crowdsourcing [2] – our quality control
measures proved robust enough to yield 70% overall correctness. Our experi-
ment has shown that the expertise level of the best crowd workers group on
crowdsourcing platform microWorkers in combination with our quality control
is sufficient to perform the reverse engineering classification activity and produce
decent results. The overall degree of correctness of 70% is a good result similar
to what can be achieved by a single expert performing the same task. However,
with less than 20 USD expenses for classifying the ten code fragments, crowd-
sourcing is a significantly more cost-effective solution. The results indicate that
crowdsourcing can be applied to perform specific reverse engineering activities,
when they are broken down into small tasks and the process is guided by suit-
able quality control methods. Larger-scale experimentation could look deeper
into the applicability of measures for disagreement as indicators for correctness,
into suitability of other crowds from different platforms and into understanding
the complexity of different reverse engineering tasks for crowd workers.

8 Conclusions and Future Work

This article motivated research in crowdsourced reverse engineering and out-
lined three major challenges – (1) automatic task extraction, (2) source code
anonymization and (3) results aggregation and quality control – for applying
crowdsourcing in the reverse engineering domain. To illustrate these challenges,
we presented CSRE, our approach for concept assignment based on crowdsourced
classifications. Extending our previous work in [10], we provided a detailed the-
oretical basis of the reverse engineering problem of concept assignment and,
following an overview on existing approaches, presented a re-formulation of con-
cept assignment as classification problem. Figure 2 refines the CSRE process
[10], introducing relevant activities and artifacts and specified the anonymiza-
tion algorithm in Algorithm1. We presented a detailed problem analysis and
the CSRE approach to address each of the challenges. Our classification task
extraction method re-uses existing software documentation tools. To address
aggregation and quality of crowdsourced results, we showcased a method com-
bining several crowdsourcing quality control techniques. The extended review
of related work of crowdsourcing in software engineering and reverse engineer-
ing shows a lack of crowdsourcing consideration in reverse engineering. At the
same time, we reported examples of successful application of crowdsourcing in
software engineering and demonstrated the similarity of crowdsourced concept
assignment to microtasking in eight dimensions.

We reported on our experiences from an evaluation experiment on the crowd-
sourcing platform microWorkers, which produced 187 results by 34 crowd work-
ers, classifying 10 code fragments at a low cost. The results’ quality indicates
that crowdsourcing is a suitable approach for certain reverse engineering activ-
ities. We were positively surprised by observations demonstrating an unexpect-
edly high level of engagement and effort by individual crowd workers to solve the
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tasks correctly. Calculating entropy and Herfindahl dispersion measure, we could
see some evidence for the applicability of the crowdsourcing principle “wisdom
of the masses” in our context, since higher levels of agreement was indicative
of correctness. Extending previous evaluations [10], we added a focus on crowd
worker behavior, in particular traces of fake contributions. The detailed analysis
includes definitions, figures and interpretations of time and length distributions,
time-length ratio and levenshtein-based similarity.

Future research challenges include achieving similar results in other
areas of reverse engineering and improving the quality of the results. To iden-
tify these further reverse engineering activities and corresponding crowdsourc-
ing paradigms, the matching procedure we used in Sect. 6 can be employed.
An evaluation with a larger budget and crowd worker base should yield more
insights into the applicability of crowdsourcing for reverse engineering activities,
especially when combined with more specific, tailored measures of agreement
in crowd worker results. An interesting research challenge is the crowd-based
specification of concrete problem and solution domain models. Further investi-
gations will show if this is possible through isolated microtasking with a more
comprehensive classification ontology specific to the legacy system instance, or
whether complex collaborative crowdsourcing approaches are necessary. While
anonymization has been shown as the most difficult challenge, providing many
opportunities for further research, application of our proposed method in con-
texts without anonymization requirements like intra-organization settings or
open source projects will produce further insights.
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