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Abstract. Most techniques for webpage structure and design mining are based
on code analysis and are detached from a human user’s perception of the web
user interface (WUI). Our paper is dedicated to approaches that instead focus on
analysis of webpage’s visual representation – the way it is rendered in different
browsers and environments and delivered to the end user. Specifically, we
describe the software tool that we built, which takes a WUI screenshot and
produces structured and machine-readable representation (JSON) of interface
elements as made out by a human user. The implementation is based on
OpenCV (image recognition functions), dlib (trained detector for the elements’
classification), and Tesseract (label and content text recognition). To demon-
strate feasibility of the approach, we describe application of our analyzer tool to
auto-calculate certain measures for a WUI and to predict users’ subjective
impressions. Particularly, we assess UI visual complexity, which is known to
significantly influence both cognitive and affective aspects of interaction. The
results suggest the analyzer’s output is mostly characteristic of the users’ visual
perception and can be useful for auto-assessing and comparing WUIs.
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1 Introduction

Web Engineering sees a growing demand for means to auto-assess quality of web user
interfaces (WUIs), particularly their usability and subjective attractiveness for target
users [1, 2]. In webpage structure mining, code analysis techniques aimed on
HCI-related UI assessment are mostly able to gauge user- and task-independent aspects.
Examples include validating HTML/CSS, checking correspondence to accessibility
guidelines, finding “bad usability smells” [1], etc. As nowadays web pages are
increasingly produced by web engineering frameworks or content management systems,
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their code becomes reasonably accessibility-compliant and “smell-free”, but that alone
does not ensure good usability. Extending the approach to some interaction dimensions
is problematic: e.g., to investigate web page layout and spatial properties of WUI
elements, a code analysis tool basically has to incorporate a web browser’s rendering
engine.

So, UI analysis and mining see increasing application of computer vision tech-
niques, which are already widely used in medicine, robotics, production quality control,
etc. A basic computer vision task is image recognition, which is identification of visual
objects and their classification into known subsets (object types). The identification is
carried out through image segmentation or discovery of shapes, based on detection of
edges, surfaces or textures, etc. Visual analysis of UIs based on computer vision
techniques, which we call human-computer interaction (HCI) vision, has certain par-
ticular features compared to the other application domains. Those that make the
analysis easier include: absence of noise, glare, or difference in lighting; perfect angle
of view; no need to consider movement; mostly complete, not partially covered objects.
Arguably, the main challenge is visual variability within WUI elements types due to
different design styles: even whitespace is rarely white in webpages.

Still, the important advantage of HCI vision is the guarantee that the analyzer deals
with the same interface the user witnesses, while HTML/CSS code is unpredictable in
this (e.g. it can be rendered differently in different browsers and environments). For UI
visual analysis, template-matching based recognition, e.g., with the popular and free
OpenCV library, is probably the most straightforward approach, but it’s relatively slow.
An influential novation in the field was the VIPS (VIsion-based Page Segmentation)
algorithm for detection of webpage layout structure based on its visual representation
[3]. It inspired the potent Bento/Bricolage solution for semantic page segmentation and
design mapping, in which image analysis is primary and supplemented by DOM [4].
Indeed, most recent approaches combine the visual analysis with code mining [5],
which in particular makes them capable of increasing performance of web page seg-
mentation and extracting textual content without the “costly” recognition stage [6]. The
analysis results are generally reverse-engineered interface semantics represented as
DOM-like tree or spatial graph [7] or some interface metrics, related to content (e.g.,
shares of text, images and whitespace on web page), colors or visual complexity [8].

Visual complexity is one of the most investigated metrics in webpage analysis,
since this measure affects user’s cognitive load, subjective perceptions of aesthetics and
usability etc. [8]. However, its automated assessment in WUIs has until recently been
limited, although largely seen as desirable [9]. The three major factors behind the
visual-spatial complexity of UI are arguably the number of objects, their diversity, and
the regularity of their spatial allocation [10]. Accurate evaluation of the latter is most
problematic (as it’s fundamentally the non-computable descriptive complexity) and is
often approximated with a compression or entropy-related measure.

In our paper we describe implementation of a WUI visual analyzer and evaluate its
viability in predicting users’ perception. Though the process that we proposed and
implemented can be suitable for many UI mining tasks, in the current work we applied
it to the analysis of visual complexity. In Sect. 2 we describe the architecture of our
analyzer tool and provide some technical details. In Sect. 3 we evaluate the data
produced by the analyzer and explore whether they can be characteristic of users’
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perception of WUIs. In the final section we interpret the results of the data statistical
analysis and provide conclusions on the analyzer’s capacities and current limitations.

2 The WUI Visual Analyzer

As shown in Fig. 1, our UI analysis architecture consists of two parts: the Analyzer
Frontend and the Visual Analysis backend. The Analyzer Frontend is a Web Appli-
cation1 that communicates with the Visual Analysis Backend, implemented as Web
Service, via an HTTP Interface. Our visual page analysis algorithm is based on [7]: it
takes a screenshot of a user interface as input and tries to identify the UI elements of
which the interface is formed. Based on the “atomic” UI elements, higher-level
structures can be identified through analysis of the visual hierarchy of the interface,
using closeness, alignment, containment etc.

Preprocessing. To improve the edge detection results, preprocessing of inputs into
black-and-white inputs is required. Those images are represented as binary matrices. To
achieve this input, the screenshot is converted to grayscale. The binary image is then
produced using a threshold function. Due to the relatively low amount of color in user
interfaces compared to general images, separate binary images from different color
channels are not providing significant improvements to subsequent processing.
Upscaling before conversion to black-and-white has shown to improve detection rate
significantly. We are using the respective OpenCV2 functions to perform this step.

Fig. 1. Overview of the analysis process.

1 available online: http://webmining.wuikb.tech/ratio/screenshot.php.
2 https://opencv.org/.
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Detection of Rectangular Areas. In order to identify UI elements like frames, buttons
or textboxes, this step detects rectangular areas of interest. This is done using
OpenCV’s edge detection for horizontal and vertical lines on the binary matrix. The
resulting list of vectors is then checked for rectangles by looking for convex shapes
with 4 corners above a minimum size, resulting in 4-tuples r ¼ x; y;width; heightð Þ.
Optical Character Recognition (OCR). To identify text in the UI, we use a com-
bination of OpenCV’s close-edge detection and Tesseract3. First, areas with close
edges are identified as candidates. These areas are then upscaled and converted to black
edges on white background. If Tesseract yields a result on the snippets, they are
considered as text. The bounding rectangles are annotated with the textual content and
added to the previous list of rectangles.

Detection of Special UI Element Types. This step uses specialized detectors for
different types of UI elements (e.g. radiobuttons, checkboxes, dropdown menus). The
detectors are trained on one particular type using supervised learning with the
Felzenszwalb HOG feature extractor implemented in dlib4. Radiobuttons and check-
boxes in checked and unchecked state have to be separately trained. Training datasets
have to represent different styles of UI elements, e.g. Windows and MacOS styles. For
native operating system style UI elements, the datasets can be very small whereas for
WUIs with various CSS styles, larger datasets are required. The detected UI elements
are added to the previous list as bounding rectangles with annotated type.

Analysis of Composite Structures. In this step, composite structures are identified
based on the un-typed rectangles and text fragments detected in previous steps using
decision tree rules. Text fragments are classified as label according to proximity to
other objects, word if isolated, line if min. five horizontally neighboring words with
equal vertical alignment exist, and text of min. 2 lines in vertical proximity. Labeled/
unlabeled buttons, dropdowns and textfields are identified combining the text and
object locations. Areas are detected as rectangles containing other UI elements (Fig. 2
shows visualized results of this step). The identified UI elements and structures are
represented as JSON in the HTTP API:

{"elements": [
{ "height": 35, "positionX": 10, "positionY": 50, 

"text": "Name", "type": "label", "width": 40 },
{ "height": 35, "positionX": 70, "positionY": 50, 

"text": "Enter name", "width": 250,
"type": "labeled dropdown or textfield" },

{ "height": 20, "positionX": 130, "positionY": 100,
"text": "OK", "type": "button", "width": 50 },

],
"page": { "height": 1024, "width": 1280}}

3 https://github.com/tesseract-ocr/tesseract.
4 http://dlib.net/.
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Results Aggregation and Representation. The analyzer frontend aggregates the
visual analysis results with the results from DOM analysis and calculates several
metrics for the UI. The first group included the 3 metrics related to visual complexity:

1. The number of all identified UI elements: AElements. Note that this number results
from visual analysis and is agnostic to programming styles and HTML elements
invisible to users, in contrast to elements in DOM analysis.

2. The number of different elements types identified by the analyzer: AVocab.
3. Compression rate ACompress, the current representation of UI’s spatial regularity,

is currently calculated as the area S0 (in pixels) of the webpage divided by the file
size F (in bytes) of the image compressed using the JPEG-1005 algorithm.

The three metrics of the second group characterized relative (i.e. divided by S0)
shares of the areas in the UI covered by the different types of UI elements:

4. Textual content, i.e. area under all elements recognized as textline: AText.
5. Graphic and mixed content, i.e. area under all elements of the other types: AOther.
6. Whitespace, i.e. all the remaining pixels: AWhite.

3 Evaluation

The goal of the experimental evaluation was to test whether data provided by the
analyzer can be useful in characterizing users’ perceptions of web UI, particularly the
complexity. Thus, the main hypotheses were: (1) the analyzer metrics are correlated

Fig. 2. A web interface screenshot with UI elements recognition results highlighted.

5 cf. ISO/IEC 10918-1:1994.
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with the respective subjective evaluations by users; (2) the analyzer metrics can predict
subjective complexity of web UIs. Since asking the users to express the subjective
metrics in absolute quantities would be unattainable, we chose to rely on ordinal
values. We also employed an entropy measure presumably reflecting regularity of UI.

3.1 Experimental Survey

Experimental Design. The material in the experiment was 21 operating websites of 11
German universities and 10 Russian universities (in all cases, English versions were
used). Based on the experiment’s goals, we devised 7 evaluation scales (see in
Table 1), for each of which 7-point Likert scale was used (1 being “completely dis-
agree”, 7 – “completely agree”). The independent variables were the 3 complexity
metrics produced by the analyzer (AElements, AVocab, and ACompress), the 3 “areal”
metrics (AText, AOther, and AWhite), plus the entropy measure MEntropy. In the
current work, the latter was obtained by applying the standard Matlab’s entropy(I)
function (returns a scalar value E reflecting the entropy of grayscale image I) to the
websites screenshots.

The Apparatus and Procedure. The survey to collect data was implemented in
LimeSurvey software, and the participants used web browser to interact with it. Some
of them worked in university computer rooms, while the others used their own com-
puter equipment with varying screen resolutions, to better represent the real context of
use. Each subject was asked to evaluate the screenshots of the 21 websites’ homepages
(presented one by one in random order) per the 7 scales. On average, it took each
participant 30.3 min to complete the survey, and the data collection session lasted 19
days overall. We used screenshots, not the actual websites, to ensure uniformity of the
experimental material between the participants and with the analyzer.

The Participants. In total, 63 participants (30 male, 33 female) provided their eval-
uations of the websites. The convenience sampling method was applied, with most of
the participants being students or universities staff members. The self-denoted age
ranged from 19 to 72, mean 27.6, SD = 8.07. The self-denoted nationalities were
Russian (65.1%), German (17.5%), Argentinian (4.8%), and others (including

Table 1. The experimental scales and descriptive statistics

Scale (statement) Var. name Range Mean (SD)

This webpage has many elements SElements 2.94–5.81 4.59 (0.94)
The elements in the webpage are very diverse SVocab 2.78–5.21 4.18 (0.77)
The elements in the webpage are well-ordered SOrder 2.84–5.18 4.31 (0.50)
The webpage has a lot of text SText 2.65–6.21 3.92 (0.99)
The webpage has a lot of graphics SImg 2.27–5.81 4.00 (1.17)
The webpage has a lot of whitespace SWhite 2.46–6.13 3.51 (0.88)
The webpage appears very complex SComplex 2.57–5.83 3.60 (0.75)
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Bulgarian, Vietnamese, Korean, etc.). Submissions by another 13 participants were
discarded as being incomplete (none of them had at least 50% of websites evaluated).

3.2 The Data Analysis Results

Descriptive Statistics. In total, 9261 evaluations were collected in experiment, of
which 95.2% were considered valid; one website (#14) was removed from the analysis
due to technical problem with the screenshot. Table 1 presents averaged data that we
will further use in the analysis. We are aware about certain controversy in calculating
mean for ordinal data, but we are going to only use the averaged values as the relative
metrics for the websites, i.e. continue treating them as ordinal data. The Shapiro-Wilk
tests suggested that for SWhite (p = 0.01), SElements (p = 0.05) and SOrder
(p = 0.05) the normality hypotheses had to be rejected.

The Analysis of Correlations. To measure associations between the respective val-
ues, we used Kendall’s tau-b, as non-parametric statistic (without assumption of nor-
mality) for ordinal scales. In the analyzer performance analysis, we found significant
correlations between AElements and SElements (s = 0.526, p = 0.001), AElements
and SVocab (s = 0.501, p = 0.002), AElements and SImg (s = 0.347, p = 0.032),
AElements and AVocab (s = 0.447, p = 0.011), ACompress and SWhite (s = 0.347,
p = 0.032).

In the areal metrics, AText was significantly correlated with SVocab (s = –0.322,
p = 0.048), SText (s = 0.495, p = 0.002), and SImg (s = –0.484, p = 0.003). AWhite
was correlated with SElements (s = 0.421, p = 0.009), SVocab (s = 0.491, p = 0.003),
SText (s = –0.379, p = 0.019), SImg (s = 0.600, p < 0.001), and SWhite (s = –0.337,
p = 0.038).

In the complexity analysis, significant correlations with SComplex were found for
SElements (s = 0.582, p < 0.001) and SVocab (s = 0.440, p = 0.007), while SOrder
(s = –0.299, p = 0.068) and AElements (s = 0.307, p = 0.06) were correlated with
SComplex at a = 0.07. MEntropy was correlated with SVocab (s = 0.364, p = 0.025),
SOrder (s = 0.372, p = 0.023), SText (s = –0.474, p = 0.004), SImg (s = 0.505,
p = 0.002), and SWhite (s = –0.453, p = 0.005), but, unexpectedly, not with SCom-
plex (s = –0.032, p = 0.845).

The Regression Analysis. To test whether the assessed UI complexity (SComplex)
could be predicted by the analyzer, we used ordinal regression with AElements and
ACompress factors (to match the ordinal regression’s assumptions, AVocab was
excluded as highly correlated with AElements). We also included the MEntropy factor,
as correlated with the assessments in the survey, but with none of the analyzer’s
metrics. The resulting ordinal regression model was highly significant (v2(3) = 13.83,
p = 0.003, Nagelkerke pseudo R2 = 0.501), and the proportional odds assumption held
(p = 0.187). Of the three factors, only AElements (b = 0.048, W(1) = 9.25, p = 0.002)
and ACompress (b = –2.178, W(1) = 5.06, p = 0.024) were significant, but not
MEntropy (W(1) = 1.391, p = 0.238).
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4 Conclusions

The results of the correlations analysis suggest that AElements was characteristic of
several subjective metrics, including SElements (s = 0.526). On the contrary, AVocab
didn’t have significant associations with the users’ perceptions. AElements was also
correlated with SComplex (s = 0.307), the overall subjective complexity of web UI.
In the areal analyzer’s metrics, AText was characteristic of SText (s = 0.495) and
several other subjective metrics. AWhite was correlated with most of the subjective
metrics, but these associations were contrary to what would be expected: e.g. there was
negative correlation with SWhite (s = –0.337). Actually, ACompress was better in
characterizing the UI subjective ampleness (s = 0.347). For AOther no significant
correlations were found. These findings suggest that the analyzer is worthy at counting
the number of UI elements and the area under textual content, but so far is poor at
determining the types of UI elements and the area under graphics (AOther and hence
AWhite).

The analyzer’s metrics were also significant in the regression model predicting web
UI subjective complexity (p = 0.003, pseudo-R2 = 0.501). MEntropy, calculated with
Matlab’s image entropy function, wasn’t helpful in predicting complexity, which
suggests that the frequency analysis it implements does not reflect UI subjective reg-
ularity well. The model is ordinal regression, and automating relative ranking of UIs
(e.g. different versions of the same webpage design) is indeed desirable in Web
Engineering. Overall, our visual analyzer’s output is mostly characteristic of the users’
visual perception and can be useful for auto-assessing and comparing WUIs.

Our further work plans will be aimed at improving the analyzer’s capacity in
recognizing the types of UI elements, supplementing it with webpage code analysis
(DOM). We also plan to study the regularity dimension of UI complexity: either
elaborating on MEntropy, since it was correlated with most subjective metrics, or
employing machine learning approaches to train predictive ANN models.
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