)

Check for
updates

ReWaMP: Rapid Web Migration
Prototyping Leveraging WebAssembly

Sebastian Heil®™) | Valentin Siegert, and Martin Gaedke

Technische Universitat Chemnitz, Chemnitz, Germany
{sebastian.heil ,valentin.siegert,
martin.gaedke}@informatik.tu-chemnitz.de

Abstract. Web Migration is a challenge, in particular for Small and
Medium-sized Enterprises (SMEs). In previous collaborations with SMEs
we noticed an initial resistance to migrate legacy desktop applications to
the web, due to concerns about the risk and lack of developers with web
expertise . This initial hurdle can be mitigated by the ability to rapidly
create running web prototypes based on the existing desktop codebase
and expertise of the developers. Therefore, we outline a rapid prototyping
approach for Web Migration and present a solution architecture, process
and supporting infrastructure based on WebAssembly. We describe chal-
lenges and report on an experiment applying WebAssembly on a scenario
desktop application derived from real-world industrial code.

Keywords: Web migration + Prototyping - WebAssembly
Software reuse

1 Introduction

Migration of legacy systems (LS) to the Web is an important challenge for soft-
ware developing companies. On the one hand, user expectations, advantages of
platform-independent deployment [2] and lack of long term support for obsolete
technologies provide a rationale for renewing legacy software as web applications.
Though aware of these reasons for web migration (WM), Small and Medium-
sized Enterprises (SMEs) find it difficult to commence a WM [4]. In several
previous projects in collaboration with SMEs, we noticed initial resistance to
migrate legacy desktop applications to the web.

Using LFA problem trees, we identified two main problems that contribute
to the notion of risk which keeps SMEs from commencing a WM: doubts about
the desirability and doubts about the feasibility. Desirability concerns are rooted
in a lack of knowledge of current web technologies and thus possibilities and
advantages. Feasibility concerns are mainly due to a lack of employees with web
development expertise in companies which have focused on the development of
desktop applications. Solving this problem means to demonstrate desirability
and feasibility to these companies.

© Springer International Publishing AG, part of Springer Nature 2018
T. Mikkonen et al. (Eds.): ICWE 2018, LNCS 10845, pp. 84-92, 2018.
https://doi.org/10.1007/978-3-319-91662-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91662-0_6&domain=pdf

ReWaMP: Rapid Web Migration Prototyping Leveraging WebAssembly 85

To address similar concerns in (forward) web engineering, prototyping
techniques are common. Widely adopted Agile methodologies have promoted
prototype-first development. Influenced by Design Thinking methods [5], rapid
prototyping and iterative development are used to involve stakeholders and
gather early feedback. The prototypes allow to explore the solution space in
the two dimensions of desirability and feasibility [5]. To demonstrate technical
feasibility of the solution idea, required technologies and frameworks are explored
in the prototype. Also, the prototype demonstrates core features of the solution
idea. Thus, software prototypes are used as a means of communication, present
main characteristics of the solution to stakeholders and allow to interactively
gather feedback. In this paper, we explore how the rapid prototyping paradigm
can be transferred from forward web engineering to the field of web migration.

The key characteristic of rapid prototyping is limited time and effort. Existing
prototyping methods like [9] can be re-used to support parts of this process which
require development from scratch. To meet the effort and time requirements of
rapid prototyping, re-use of as much of the legacy code as possible is crucial.
Technologies like Google Native Client, emscripten or especially WebAssembly!
allow to run non-JavaScript programs in the browser. A re-use focused rapid
prototyping approach can be primarily performed with existing staff experienced
in the legacy technology base. We describe our approach in Sect. 2, detail our
WebAssembly-based method in Sect. 3, report on our findings in a validation
experiment in Sect. 4, provide an overview on related work in Sect. 5 and conclude
with a roadmap in Sect. 6.

2 Approach

To address the initial resistance described in Sect. 1, we propose the Rapid Web
Migration Prototyping (ReWaMP) approach (cf. Fig.1) for enabling web engi-
neers to quickly create running web application prototypes from legacy code.
The legacy code is the source code of the LS which should be transformed into
a web application. ReWaMP assumes that the legacy source code is available,
which typically is the case in enterprise software development contexts, where
legacy systems are still actively operated, maintained and even developed.

UI mockups are visual sketches of the user interface. They allow to get
early feedback from the target users on the understandability and information
structuring of the user interface and can help to identify problems in the process
or the conceptual abstractions of the underlying domain model. Mockups are
traditionally created manually, as hand-drawn rough sketches. Since the LS is
still a running software, Ul mockups can be created from screenshots of the
legacy UI with minimal effort in the first iteration of our approach. Over time,
the screenshot mockups can be replaced and incrementally improved towards
a modern web UI, taking into account similarity aspects in order to smoothly
transition from the legacy layout to a potentially different web UT layout [3].

! http://webassembly.org/.

http://webassembly.org/

86 S. Heil et al.

|:> @ :> Legacy Code
WMST
Legacy System Legacy Code Compiler WMST Runtime é:é:g
&=|— OO o — Web Ui
WM Engineer Browser
Ul Mockups
M%m > | O—— RESTAPI
Annotations oc
AN ~ J U v J ~ J
Artifacts Actions ReWaMP Prototype

Fig. 1. ReWaMP overview

Based on the initial artifacts legacy code and UI mockups, in ReWaMP, the
migration engineer (ME) creates the web application prototype by three actions:

1. Leveraging a suitable web migration support technology (WMST), he creates

an adapted version of the legacy code artifact which can be run in the browser.
2. Based on the UI mockups, he implements a web Ul using HTML, CSS & JS.
3. By annotating the UI mockups, he generates a REST API backend (cf. [9]).

This paper focuses on action 1. We provide details on this action in Sect. 3. For
action 2 we are currently investigating automatic transformations of legacy Uls
to web-based Uls, from absolute layouts to grid-based layouts under similarity
constraints [3] using optimization algorithms. Action 3 integrates our previous
work [9] from forward web engineering contexts into this migration prototyping
scenario. The resulting prototype combines legacy code with a generated REST
API and a newly developed web UL It demonstrates feasibility and desirability
of a WM with limited effort. From this interim stage, the application can be
incrementally transformed into a real web application by migrating the business
logic contained in the legacy code towards client- or server-side web programming
platforms. The architecture allows re-use of legacy view behavior code at the
client side, in related work the re-use at server side has been described [7]. Thus,
ReWaMP is a rapid prototyping approach for WM.

3 WebAssembly-Based Rapid Web Migration
Prototyping

WebAssembly (WASM) is an open standard currently designed by the W3C of a
format for compilation to the web aiming at portability and size- and load-time-
efficiency. The group includes all major browser providers. WASM combines
experience from previous work on emscripten and Native Client. Using parts

ReWaMP: Rapid Web Migration Prototyping Leveraging WebAssembly 87

of the emscripten toolchain, C/C++ code can be compiled to WASM. As of
01/2018, WASM has reached cross-browser consensus with preview implemen-
tations in all major browsers. In assessment of WMSTs, WASM has the fewest
limitations, is compatible with major platforms, is the most current and actively
developed technology and sees wide support from major companies due to being
an open standard. Therefore, we showcase in this section our prototypical imple-
mentation of a ReWaMP toolchain based on WASM for action 1 of Sect. 2. For
this, we describe the architecture of the resulting web migration prototype and
detail the ReWaMP process.

3.1 Architecture of ReWaMP Prototypes

The client side of ReWaMP prototypes consists of:
HTML/CSS. The HTML/CSS component describes the layout and content
structure of the Web UI as created in action 2 of Fig. 1.

WASM. The WASM Code component is derived by compilation of the legacy
view behavior code to WASM. For each user interface, the corresponding WASM
file includes all UI functionality and semantics. To enable communication with
other components, it is bound to the JS glue code.

JS Glue Code. The JS glue code is created at the compilation of legacy code
to WASM by the emscripten compiler. It provides the JS API of WASM, and
thereby standard functionalities like WASM memory management and serializa-
tion of strings for message exchange.

ReWaMP JS Code. The ReWaMP JS code provides an infrastructure for the
communication with the server side and for abstracted access to the generated
Web UL It therefore provides web migration prototyping-specific API extensions
for the JS API of WASM required to control the behavior from legacy code
compiled to WASM.

3.2 ReWaMP Process

The ReWaMP process (cf. Fig. 2) defines the necessary steps for creating a web
migration prototype according to the architecture introduced above. It creates
the WASM Code, JS Glue Code and ReWaMP JS Code for each view of the
legacy system. This is achieved through extraction of relevant information from
the legacy code, transformation in a WASM-compilable version and compilation
to the WASM target. While the compilation of C++ code to WASM is supported
by emscripten, the transformation is not trivial. To support the rapid creation
of WASM files, we developed a prototypical WASM Transformator (WASM-T)
for legacy C++ code bases using the MFC framework. The responsibilities of
the migration engineer and the WASM-T are represented as lanes in Fig. 2.

To start, the ME (1) extracts the source files describing view behavior from
the legacy code and (2) configures WASM-T, specifying file location and the main
file per view. Comparable to main functions in C++, main files are those which

88 S. Heil et al.

directly interact with a dialog or a window, containing event handlers for Ul
elements. To make it compilable to WASM, WASM-T transforms the extracted
legacy code. Since automated semantic analysis of source code is complex and
the code can reference dependencies which are not available (e.g. binaries), a
semi-automated process is required. In (3), WASM-T performs pre-processing
by deleting/rewriting GUI framework-specific parts of code and extracting Ul
coupling information from the legacy code for introducing the Web UL

After pre-processing, the ME re-engineers code parts WASM-T was not able
to transform. He does that either via expert changes in the code (4) or within a
separate expert file (5). Expert changes replace or remove complex constructs to
resolve missing dependencies. The expert file contains missing declarations and
definitions of classes, variables and functions. For providing this information,
not much knowledge about the legacy code is required, since it can be found
in the related files. The engineer mocks classes and functions, since the classes
require only DTO-like (data transfer object) versions and the bodies of server-
side functions are filled by WASM-T in (6). Full automation of these tasks is out
of scope for this exploration of WASM in web migration prototyping. WASM-T
completes the transformation (6) by generating the bodies of empty functions
in the expert files and adding WASM/JS API code, thus code ensuring both
communication directions. Then, the code is compiled to WASM (7).

& extrac
view related
behavior files

configure

WASM-T

J

write expert
file

all views
compiled
|

Migration
Engineer

2 complete 2

transformation
of view

compile
view

to WASM

check for
more views

A
preprocess
view

L at least one more view

oD DO 0

Legacy Code View ReWaMP Expert File WASM File and ~ WASM File and
Behavior Files JS Code JS Glue Code JS files per view

Legacy
Transformation

WASM-T

Fig. 2. ReWaMP process

4 Validation

In this validation, we answer the following questions through experimentation
with ReWaMP: How much time and effort are required? What expertise is
required by the migration engineer? What are the longest/most difficult activi-
ties in ReWaMP? How does WASM perform in the context of WM? Based on a

ReWaMP: Rapid Web Migration Prototyping Leveraging WebAssembly 89

real world legacy codebase by our industrial project partner, we abstracted char-
acteristics and created a sample application to answer these questions. Table 1
lists abstracted LS characteristics and their concrete instantiation in our sce-
nario, a VC++ medical appointment management application. Appointments
have a related patient, doctor and room. As business logic beyond CRUD, the
system can determine the next time slot available for an appointment with a
given combination of doctor and room. The following non-functional characteris-
tics are represented: GUI is implemented using a desktop GUI framework, MFC
in our scenario. Third party module dependencies are loaded at runtime, in the
sample application as DLLs via assembly loading. The application consists of
several components which exchange messages via MFC SendMessage. Files are
used to store configuration data e.g., opening hours, and appointments are stored
in an MS SQL database via ODBC. The scenario codebase comprises 3373 LOC,
including 187 functions and 31 classes.

Table 1. Abstract characteristics of legacy software and scenario instantiation

Abstract characteristics Instantiation in scenario

Legacy language Visual C++

CRUD functionality CRUD for medical appointments

Complex business logic Find next available time slot

Desktop GUI Microsoft Foundation Class (MFC)
Component communication Window-to-Window via MFC SendMessage
Third-party dependencies DLLs via assembly loading

File and data base persistence | Files and MS SQL Server via ODBC

4.1 Procedure

The scenario codebase was created by two researchers. Two other researchers
conducted the validation experiment: one defined the experiment, measurements
and observed, the other researcher was the test subject taking the role of the
migration engineer. The test subject followed the steps described in Fig. 2. First
he extracted the view behaviour files, then configured WASM-T and finally made
the expert change for each view. To extract the files and perform the expert
changes, Visual Studio was used to navigate the code base.

Since rapid prototyping requires quick and easy creation of prototypes, we
measure time and effort in the experiment. Time has two main components,
ty = ti2 + ¢35 the time required by the ME to perform actions 1&2 and 4&5,
and tr the time required by the supporting infrastructure to analyze and trans-
form the legacy code. t); was measured by stopwatch, tr was measured using
python’s time library. Time measurement started at the start of manual tasks
after preparation of the tools, was interrupted if WASM-T started or resumed

90 S. Heil et al.

processing and ended by finishing the last expert changes. ¢ is dependent on
the system environment. We used Intel i7 930 CPU (2,8 GHz), 14 GB RAM,
Windows 10 x64. During measurement 87 other processes were active, and an
average load of 13,8% was determined with in performance monitor. Effort
evaluates the amount and extent of changes to the existing legacy code required
by ReWaMP. We measure the effort in terms of e - the lines of code (LOC)
added/changed/ deleted by WASM-T and ey - the LOC added/changed /deleted
manually by the ME. ej; was measured by observing the test subject’s actions,
and er by comparing the inputs and results of one continuous task set after the
migration.

4.2 Results

The resulting ReWaMP prototype is available online?. Table 2 shows the mea-
surements. We were surprised to see that the related files extraction did not
take that much time (¢}2). Here, expertise in the legacy UI framework is advan-
tageous. We expected a lower ratio of ep; to the overall effort ey + er, which
is at 29%. This was caused by low decomposability of one view in the scenario,
comprising DLL loading and debug code. The experiment showed that C+-+
experience and knowledge of the legacy Ul framework are important. Basic web
engineering expertise is helpful but not required. The most difficult task were
the expert changes due to required legacy code comprehension. An interactive
web prototype based on the legacy code could be created with reasonable time
and effort through WASM-enabled code re-use. While a similar prototype can
be created by an experienced web engineer in comparable time, the contribution
of ReWaMP is to allow developers without web engineering expertise from the
existing SME staff to achieve similar results.

Table 2. Time (in hh:mm:ss) and effort

12 45
tm tar tar tr em er

01:17:42 | 00:21:31 | 00:56:11 | 00:00:72 | 253LOC | 597TLOC

5 Related Work

The large body of research in the web migration field [2,6] focuses on program
decomposition, language transformations and legacy to SOA. With WebAssem-
bly still being relatively new and a draft standard under development, there are
no relevant publications available.

For software engineering, rapid prototyping has been acknowledged to
increase the efficiency and effectiveness of software design [10]. By building and

2 https://vsr.informatik.tu-chemnitz.de/demos/ReWaMP.

https://vsr.informatik.tu-chemnitz.de/demos/ReWaMP

ReWaMP: Rapid Web Migration Prototyping Leveraging WebAssembly 91

using a model of the system, representing the persistence, major business logic
and user interface, it allows to gather feedback from users and to explore require-
ments. The availability of tool support for software prototyping plays a crucial
role for its success [10]. In our work, we therefore seek to support the rapid web
migration process by a WASM-based infrastructure. Appropriateness of rapid
prototyping particularly includes new situations with limited experience to draw
from [10]. For ReWaMP, the new situation is formed by the new technological
environment of the web application, which significantly differs from the desktop
application environment of the existing legacy system and bears uncertainties
regarding feasibility and desirability.

It has to be noted that rapid prototyping as a methodology has often seen
transfer into new domains. As a concept originating in the hardware develop-
ment domain, it has been transferred into software engineering, especially in the
context of information systems [1], UI Design [8] and even seen adoption for
instructional design [10]. Likewise, in this paper we explore the application of
rapid prototyping in the context of web migration, enabled by technologies like
WebAssembly.

6 Conclusions and Roadmap

In this paper, we introduced ReWaMP, a novel rapid prototyping approach
addressing the initial hurdle of web migration. ReWaMP enables migration
engineers to quickly demonstrate desirability and feasibility. We outlined
requirements and assessed technologies for supporting the approach, selecting
WebAssembly as the most promising. Based on WASM, we presented a prototype
architecture, creation process and supporting infrastructure for web migration
prototyping, outlined challenges when applying WASM for WM prototyping and
reported on the results of a validation experiment. Qur next steps are investiga-
tion of automatic transformations of legacy Uls to web-based Uls under similarity
constraints using optimization algorithms, the enhancement of automation of the
supporting infrastructure and evaluation of the method in industrial context.

Acknowledgment. The authors would like to thank Thomas Blasek and Tobias Lang
for their valuable contributions. This research was supported by the eHealth Research
Laboratory funded by medatixx GmbH & Co. KG.

References

1. Alavi, M.: An assessment of the prototyping approach to information systems
development. Commun. ACM 27(6), 556-563 (1984)

2. Aversano, L., et al.: Migrating legacy systems to the web: an experience report. In:
Proceedings of CSMR 2001, pp. 148-157. IEEE Computer Society (2001)

3. Heil, S., Bakaev, M., Gaedke, M.: Measuring and ensuring similarity of user inter-
faces: the impact of web layout. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H.,
Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10041, pp. 252-260. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-48740-3_18

https://doi.org/10.1007/978-3-319-48740-3_18

92

10.

S. Heil et al.

. Heil, S., Gaedke, M.: Web migration - a survey considering the SME perspective.

In: Proceedings of ENASE 2017, pp. 255-262. SCITEPRESS (2017)

. IDEO.org: The Field Guide to Human-Centered Design. IDEO (2015)
. Khadka, R., et al.: Legacy to SOA evolution: a systematic literature review. In:

Migrating Legacy Applications, Chap. 3, pp. 40-71. IGI Global (2013)

. Lucia, A., et al.: A strategy and an eclipse based environment for the migration

of legacy systems to multi-tier web-based architectures. In: Proceedings of ICSM
2006, pp. 438-447. IEEE, September 2006

. Nebeling, M., Leone, S., Norrie, M.C.: Crowdsourced web engineering and design.

In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387,
pp. 31-45. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31753-
8.3

Rivero, J.M., Heil, S., Grigera, J., Gaedke, M., Rossi, G.: MockAPI: an agile app-
roach supporting API-first web application development. In: Daniel, F., Dolog, P.,
Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 7-21. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39200-9_4

Tripp, S.D., Bichelmeyer, B.: Rapid prototyping: an alternative instructional design
strategy. Educ. Technol. Res. Dev. 38(1), 31-44 (1990)

https://doi.org/10.1007/978-3-642-31753-8_3
https://doi.org/10.1007/978-3-642-31753-8_3
https://doi.org/10.1007/978-3-642-39200-9_4

	ReWaMP: Rapid Web Migration Prototyping Leveraging WebAssembly
	1 Introduction
	2 Approach
	3 WebAssembly-Based Rapid Web Migration Prototyping
	3.1 Architecture of ReWaMP Prototypes
	3.2 ReWaMP Process

	4 Validation
	4.1 Procedure
	4.2 Results

	5 Related Work
	6 Conclusions and Roadmap
	References

