AWSM
Agile Web Migration for SMEs

Sebastian Heil and Martin Gaedke
Technische Universitit Chemnitz, 09107 Chemnitz, Germany

Keywords:

Abstract:

Software Migration, Web Engineering, Agile Development.

Migrating legacy desktop to web applications is an important and challenging task for SME software companies.

Due to their limited resources, migration should be integrated in ongoing development processes. Existing
research in this area does not consider recent paradigm shifts in web development. Therefore, our work is
dedicated to supporting SME software providers in migrating to modern web applications while integrating this
into ongoing development. This paper outlines our idea and presents a roadmap towards achieving this goal.

1 INTRODUCTION

Driven by the high number of ways in which users
interact with recent web applications, changing user
expectations pose new challenges for existing non-web
software systems. Continuous evolution of technolo-
gies and fading away of support for obsolete technolo-
gies furthermore intensify the pressure to renew these
systems. As web browsers are becoming the stan-
dard interface for many applications, web applications
provide a solution to platform-dependence and deploy-
ment issues (Aversano et al., 2001). Existing software
systems have been developed over a long time and
contain valuable knowledge about models, rules and
solutions in their application domain. Thus, it is often
not practical to replace them by a newly developed
web application. Instead, it is necessary to transform
legacy into new software keeping the existing knowl-
edge. This is the objective of software migration.
Existing migration approaches are hardly feasible
for small and medium-sized enterprises (SMESs), can-
not be run in parallel to and combined with ongoing
agile development and do not consider the specifics of
web application development. Development teams of
SME software providers are occupied with develop-
ment and maintenance of existing applications. As the
resources are rather limited, there is no development
team available to exclusively dedicate to migration
(Horowitz, 1998). Agile development is widely em-
ployed, but there is no approach which allows migra-
tion to be integrated into day-to-day agile development
activities. Interactivity and ubiquitous mobile access
require migration towards web applications. However,

Heil, S. and Gaedke, M.
AWSM - Agile Web Migration for SMEs.

existing approaches do not consider web characteris-
tics such as distributedness, statelessness, hypermedia,
event-orientation, responsiveness etc. Also, recent ad-
vances in Web Engineering like re-use oriented com-
position approaches are not regarded.

Imagine e.g., a patient management system. This
software is run as desktop application at doctors’ of-
fices. For adding interactivity like online appointment
scheduling, migration to web is required. However,
due to continuously changing regulations, SME de-
velopment teams are busy updating and maintaining
the system. This is where our approach for Agile web
migration for SMEs (AWSM) comes into play.

As there are many SME software providers with
legacy software and user expectations require transfor-
mation to modern web applications, enabling them to
successfully perform this migration within given con-
straints will impact the competitiveness of this sector.

We outline AWSM in Section 2. We position
our approach to related work in Section 3 and con-
clude the paper with a roadmap in Section 4.

2 THE AWSM APPROACH

As shown in Figure 1, AWSM contributes to four ar-
eas. For Requirements & Knowledge Discovery, we
propose a meta-model of knowledge, an annotation
platform and discovery tools. Migration Planning &
Implementation are supported by a component-based
target architecture, component repository and hybrid
web applications. Requirements & Knowledge Dis-
covery and Migration Planning & Implementation are

189

In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 189-194

ISBN: 978-989-758-189-2

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

/ Requirements & Knowledge Discovery \ / Migration Planni

p Knowledge f
Viode

& Implementation \

Target
Architecture

Features

Components

Knowledge entities f

Placeholders

p Annotation

p Discovery f Component p Hybrid Web

Crowd-based M

AN

URL refs
Agile Integration

( ( f IDE integration ) (p Migration Backlog
( ( f Monitoring Dashboard ) (p

Figure 1: AWSM Overview.

Enriched source Default Comp. UI(X)

Al-based Custom Comp. Communication

) (f Test Generation ) >
Migration Management

Quality Visualisations ) (P Management Integration )

iterative. Agile integration and migration management
intersect both areas. In Figure 1, a p denotes work in
progress and an f denotes future work.

Simple transformation approaches are not suffi-
cient, as migrating to the web requires a fundamental
paradigm shift involving a distributed, multi-language
target environment. Thus, assisted re-development
taking into account these characteristics is required.
Here, the most important challenge is to avoid loosing
existing knowledge. Therefore, at this early stage we
focus on Requirements & Knowledge Discovery.

Requirements & Knowledge Discovery. Legacy
system understanding is an art, but a necessary first
step (Horowitz, 1998). To discover, document and
prepare the knowledge which is implicitly contained
in legacy source code for migration AWSM introduces
a knowledge model. Existing work, distinguishes three
types source code: presentation/user interface, ap-
plication logic and database access/persistence (Can-
fora et al., 2000; Horowitz, 1998; Ping et al., 2003).
OMG’s Knowledge Discovery Meta-Model (KDM)!
specifies a meta-model for software systems. The
source package of KDM describes source code files
and areas in the source code. However, KDM does
not provide a model for expressing the knowledge con-
tained in the source itself. This is too coarse-grain
and therefore we work on an ontology for knowledge
in source code. The knowledge ontology will be de-
scribed using OWL? and compatible with KDM.

guishes between two types of code information: fea-
tures and knowledge entities. Features refer to code
which implements functional requirements that are di-
rectly visible to users. Knowledge entities comprise
the traditional categories of presentation, application
logic and persistence, but also business rules, config-
uration, deployment, algorithms and explanations in
comments.

Based on the knowledge ontology, the challenge
is to support developers to discover and document the
knowledge and to make it usable for migration. Com-
prehensive re-documentation approaches like (Corbi,
1989; Kazman et al., 2003) are neither feasible for
SME:s nor can they be integrated into day-to-day ag-
ile development activities. Based on (Rivero et al.,
2014), we introduce the concept of annotations to this
problem. Annotations can be applied as an additional
layer of description over the code. An annotation ex-
presses that a selected area of source code is related to
a feature or knowledge entity. Different code informa-
tion can be annotated independently and can overlap.
One code information can appear in several places in
the code, represented by several annotations. AWSM
supports developers by providing an annotation plat-
form which allows to enrich code with annotations.
Unlike traditional re-documentation approaches, our
web-based annotation platform provides a URL for
every annotation and knowledge entity. During re-

Legacy system understanding is about understand-
ing what the software does and how the software does

it (Horowitz, 1998). Thus, our current draft distin-

Thttp://www.omg.org/spec/KDM/1.3/
Zhttp://www.w3.org/TR/owl2-overview/

190

development, this enables developers to refer to the
knowledge, e.g. in emails, wikis, task descriptions etc.,
and jump to their definition and location in the source.
The discovered features define the requirements for re-
development. A screenshot of the annotation platform
can be seen in Figure 2.



To lower effort for the annotation work, we are
currently investigating possibilities of executing this
classification task by means of machine learning and
crowdsourcing. Our discovery tools are tested and
their effectiveness is evaluated in cooperation with our
industry partner, a software development SME.

Migration Planning & Implementation. Migra-
tion planning defines the target architecture based
on components, focusing re-use and maintainability.
Components can combine all three application tiers,
but also represent only one such as user interface com-
ponents. Each component is described in terms of
features it provides.

The component repository contains a set of generic
components, such as displays, editors and lists of data
entities. If no suitable component is available, the ar-
chitecture uses a placeholder component requirements
description.

Hybrid web applications are an intermediate mi-
gration step. They consist of both newly implemented
components in HTML, CSS Javascript and also of
slightly adapted pieces of legacy code. Technologies
like Native Client®> or Emscripten* allow to execute
legacy source code within the browser with only minor
changes. While migration to a pure” web application
is the objective, a hybrid web application can decrease
the initial hurdle to migrate.

Agile Integration. The work of annotating a piece
of code can easily be done while working on this code.
When reading code during regular development or
maintenance activities and noticing valuable knowl-
edge, it can be annotated and thus be made explicit.
This is in line with the “refactor as you touch code”
policy devised by many companies employing agile
development. To make this very easy for developers,
we will integrate our platform with an IDE.

Based on the annotated source, a migration backlog
consisting of migration stories is used as implemen-
tation plan. It is set up from implementation stories
for placeholder components and integration stories for
connecting the components as defined in the target
architecture. To integrate with regular development
activities, migration stories are successively included
into iteration planning such as Scrum sprint backlogs.
To ensure functional equivalence we will apply test
generation approaches. From the re-discovered fea-
tures of the legacy system, acceptance fests for the
web-based system are created.

Migration Management is important in enter-
prise contexts. We provide a dashboard to monitor the
progress of the migration. The annotated source allows
for analysis and visualization of structure and quality

3http://gonacl.com/
“https://github.com/kripken/emscripten

AWSM - Agile Web Migration for SMEs

File: UserTable.cpp (contains 4 Entities)

Figure 2: AWSM Annotation Platform.

issues. For instance, we display the interlacing of dif-
ferent features occurring in the same locations using
sankey and chord diagrams. Our migration platform
will be integrated with development management tools
like Team Foundation Server. A set of migration sto-
ries forming a migration package can then be moved
into the development management tool. This allows to
implement them like stories within the SME’s regular
development process.

A live demonstration of our migration tool can be
found at>.

3 RELATED WORK

There is some work in the area of web migration.
Code-oriented approaches like (Aversano et al., 2001)
analyse existing systems by call-graphs and decouple
architecture layers. Using a call-graph based decom-
position, the presentation layer is decoupled from the
legacy system, reverse engineered and redeveloped
with web technologies. Legacy Application logic and
database components are left unchanged and wrapped,
presentation is migrated to HTML/CSS. The authors
state that this can only be a short-term solution as it
does not improve structure and maintainability of the
system. It does not focus on improving end-user visi-
ble features. For instance, the resulting Ul is very sim-
ilar to the legacy UI. It disregards current web design,
UIX and navigation patterns and responsiveness. Also,
nowadays web browsers are no longer restricted to
handling only presentation. Enabled by technologies
like Web Workers and client-side MVC frameworks,
more application logic is moved to the browser.
(Horowitz, 1998) describes web migration in three
steps: understanding the legacy software, designing
the architecture and testing and tuning. Distribution
of application logic to client and server is addressed.
In the architecture design, the decision of what to exe-

Shttps://vsr.informatik.tu-chemnitz.de/demos/awsm

191



ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

cute on the server or client side is essential. Besides
UI, client side issues include how much application
logic is performed on the client and how the commu-
nication between client and server is achieved. The
resulting web application is based on HTML and Java
on the client side. The main focus is on communica-
tion in distributed applications via Corba, DCOM or
RMIL. Since then, the web application environment has
changed. Browser-plugin-based technologies are van-
ishing. Components with communication via Corba,
DCOM or RMI are superseded by services and SOAP
or RESTful APIs.

Approaches like (Canfora et al., 2000) deal with
program decomposition as preliminary step for migra-
tion. Three types of components are distinguished:
user interface, application logic and database compo-
nents. For migration to a client-server architecture,
user interface components are migrated to the client,
database components to the server and application
logic can be on both. The condition is that the legacy
system is structured in distinct subroutines of the three
types and database is not calling UI. Like most pro-
gram decomposition algorithms, (Canfora et al., 2000)
exploits graph representations. The slicing algorithm
identifies Ul components based on control flow in-
formation in a system graph colored according to the
types. An interactive tool allows software engineers to
mark application logic statements and extracts a new
subroutine for the server. An optional description of
the corresponding business rule can be added. Our ap-
proach distinguishes code at a higher granularity than
the three types found in most publications. For identi-
fication, we investigate human and machine learning
classification, not only for UL The interactive tool is
similar, but our annotation tool allows to reference
annotated code information by its own URL.

(Gu and Lago, 2010) presents a survey of service
identification methods. Inputs can be knowledge at
enterprise level such as business processes, require-
ments, goals etc. or existing systems in terms of source
code, data etc. Only few approaches combine both.
The target output can be distinguished by service type.
Services are grouped into business or IT perspective
services. A wide range of strategies for service iden-
tification exist. Among less common approaches are
component-based and Ul-based methods, Ul-based are
regarded as innovative. The knowledge re-discovery of
AWSM uses a combination of knowledge on enterprise
level and existing systems. To create the target archi-
tecture, AWSM employs a component-based strategy
in combination with Ul-based.

(Ping et al., 2003) acknowledges the rapid changes
in web technologies and presents a transformation
framework for adapting existing web applications to

192

MVC web applications. The approach has three phases.
First database and presentation are separated by ex-
tracting db functionality and encapsulating it into java
beans using syntax analysis. Then, presentation is
transformed from HTML to JSP. In a last step, a
controller-centric architecture is achieved. The focus
is on database access encapsulation and control flow
transformation whereas AWSM addresses all aspects.
This work starts from static HTML web pages and mi-
grates to MVC web applications in a J2EE context. By
contrast, AWSM support migration of non-web legacy
applications to web applications.

Even though the development of web applications
has changed significantly — consider e.g. REST, client-
side MVC, mobile devices etc. — research has not
addressed this. Instead, the focus of web migration has
shifted. Recent areas of interest include migration to
service-oriented architecture (SOA) (Khadka et al.,
2013), migration to cloud environments (Krasteva
et al., 2013) and evolution of web systems (Kienle
and Distante, 2014). Surveys like (Khadka et al., 2013;
Razavian and Lago, 2010) provide an overview of re-
search in SOA migration. It comprises general phases
like legacy and target system understanding as well
as SOA specific ones such as service identification.
Service identification and identification of service rich
areas is similar to component identification in AWSM.
Open challenges in SOA migration include definition
of a common process model, automation, language in-
dependence and decomposability. While we can build
on the findings in general migration phases, migra-
tion towards interactive web applications differs. A
mayor difference lies in the impact of migration on
end users. Migration to SOA can be accomplished in
the backend without end users noticing. In contrast,
migrating legacy GUI applications towards interactive
web applications impacts the way in which end users
use the system.

Approaches like (Krasteva et al., 2013; Babar and
Chauhan, 2011) focus on migration to cloud environ-
ments. REMICS (Krasteva et al., 2013) proposes the
application of Model-Driven Modernization to the
Software-as-a-Service delivery model. As AWSM,
REMICS is based on OMG’s KDM(Object Manage-
ment Group, 2011). It focuses on migration process by
defining seven activity areas such as requirements, re-
covery, migration and validation. Distinction between
requirements and recovery of knowledge - tradition-
ally combined as legacy analysis - can also be found
in AWSM. (Babar and Chauhan, 2011) reports on ex-
periences in migration of a web application to cloud.
It focuses on architecture modifications required by
the cloud environment. Two main aspects are stated.
Separation of persistence and business logic facilitates



usage of cloud-provided storage services. Implementa-
tion of an orchestration layer is necessary when com-
ponents are distributed. Moreover, loose coupling of
components via HTTP-based APIs provides the possi-
bility to move components to different cloud providers.

There are several approaches for running legacy
C/C++ code in the browser. Google Native Client by
providing a runtime environment (Yee et al., 2009;
Donovan et al., 2011), Emscripten by compiling into
JavaScript subset asm.js (Zakai, 2011). WebAssembly
aims at specifying a common bytecode for the web. In
contrast to previous attempts, it seeks wide browser
support without requiring plugins. Building on experi-
ence from Native Client and asm._js, it is a promising
joint effort of all four major browser-providing compa-
nies (W3C WebAssembly Community Group, 2015).
These approaches bear good potential for use in mi-
gration as they allow to run legacy code in a web envi-
ronment. While this does not result in a true web ap-
plication, it can be an intermediate step and lower the
barrier to entry for migration. We are therefore evalu-
ating their migration capabilities and requirements.

Agile development has been applied to the soft-
ware migration domain. STDM (Abbattista et al.,
2009) combines a user-story-based iterative process
with automated acceptance testing. User stories and
story tests take the place of traditional requirements
documents. This improves sytem understanding and
is a starting point for the migration plan. Based on
user stories of the legacy system, acceptance tests for
legacy and new system are created. The legacy story
tests are iteratively migrated to the new system’s en-
vironment. AWSM builds on this work. We also use
annnotated features represented by user stories as a
starting point for agile migration Also, STDM does not
support feature discovery in legacy code. As stated by
the authors, STDM acceptance tests are only reusable
if legacy and target environment allow. While STDM
was tested on a small-scale Java to Java, Web to Web
migration, AWSM targets change in both program-
ming language and paradigm. Legacy acceptance tests
are therefore not reusable and are therefore left out
in favor of acceptance tests for the new system. In
(Krasteva et al., 2013), the authors describe an agile
extension of REMICS. The process is based on Type-
C Scrum and consists of several overlapping scrums
for REMICS activity areas. Also, influences from XP,
such as pair programming, are employed. In contrast
to AWSM, (Abbattista et al., 2009; Krasteva et al.,
2013) are agile migration methodologies that require
entire teams dedicated to migration. AWSM, however,
seeks to integrate migration work items into ongoing
agile development. (dos Santos et al., 2013) high-
lights the importance of visualizing technical debt for

AWSM - Agile Web Migration for SMEs

communication within teams, with management. The
dashboard in our approach follows the same idea.
Approaches like (Rivero et al., 2014) demonstrate
how agile requirements engineering can be combined
with model-driven techniques. The idea is to build
on existing requirement artifacts, UI mockups in this
case, and add an additional layer of description by
enriching them with annotations. In AWSM we ap-
ply this idea to migration. The requirement artifact
is the source code, annotations are added to describe
migration-relevant properties. In (Rivero et al., 2014),
RESTful API prototypes are then generated from stan-
dard components. This is similar to AWSM, but our
components comprise all layers of the application.

4 CONCLUSIONS AND
ROADMAP

To conclude, existing migration approaches are not
feasible for SMEs, cannot be integrated with ongoing
agile development and do not address characteristics
of current web application development. Therefore,
we outlined the scope and detailed areas of work for
supporting SME software providers in migrating to
modern web applications while integrating this into
ongoing development. We briefly reported on the cur-
rent state and presented the plan for future work.

In addition to the parts marked with p in Figure 1,
we are currently conducting a structured literature re-
view (SLR) of web migration approaches to provide a
systematic overview of existing approaches and chal-
lenges. After prototypical completion of the three
solution parts in requirements and knowledge discov-
ery, the next step on our roadmap is to evaluate the
tools with our industrial partner. We will observe how
the tools are used by the developers, identify problems
and iterate over the prototypes. Next step will be to
improve the agile integration and migration manage-
ment along with developers and product management.
Based on the feedback, we will adapt our solution ar-
chitecture and then address the parts marked with f in
Figure 1, in particular focusing on migration planning
and implementation.

ACKNOWLEDGEMENTS

This research was supported by the eHealth Research
Laboratory funded by medatixx GmbH & Co. KG.

193



ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

REFERENCES

Abbattista, F., Bianchi, A., and Lanubile, F. (2009). A
storytest-driven approach to the migration of legacy
systems. In Abrahamsson, P., Marchesi, M., and Mau-
rer, F., editors, Agile Processes in Software Engineer-
ing and Extreme Programming, volume 31 of Lecture
Notes in Business Information Processing, pages 149—
154. Springer Berlin Heidelberg.

Aversano, L., Canfora, G., Cimitile, A., and De Lucia, A.
(2001). Migrating legacy systems to the Web: an ex-
perience report. In Proceedings Fifth European Con-
ference on Software Maintenance and Reengineering,
pages 148-157. IEEE Comput. Soc.

Babar, M. A. and Chauhan, M. A. (2011). A tale of migra-
tion to cloud computing for sharing experiences and
observations. In Proceeding of the 2nd international
workshop on Software engineering for cloud comput-
ing - SECLOUD ’11, page 50, New York, New York,
USA. ACM Press.

Canfora, G., Cimitile, A., De Lucia, A., and Di Lucca, G. a.
(2000). Decomposing legacy programs: a first step
towards migrating to client—server platforms. Journal
of Systems and Software, 54(2):99-110.

Corbi, T. (1989). Program understanding: Challenge for the
1990s. IBM Systems Journal, 28(2):294-306.

Donovan, A., Muth, R., Chen, B., and Sehr, D. (2011). Pnacl:
Portable native client executables.

dos Santos, P., Varella, A., Dantas, C., and Borges, D. (2013).
Visualizing and managing technical debt in agile de-
velopment: An experience report. In Baumeister, H.
and Weber, B., editors, Agile Processes in Software
Engineering and Extreme Programming, volume 149
of Lecture Notes in Business Information Processing,
pages 121-134. Springer Berlin Heidelberg.

Gu, Q. and Lago, P. (2010). Service Identification Methods:
A Systematic Literature Review. In Nitto, E. D. and
Yahyapour, R., editors, Towards a Service-Based Inter-
net, volume LNCS 6481, pages 37-50. Springer Berlin
Heidelberg.

Horowitz, E. (1998). Migrating Software To The World
Wide Web. IEEE Software, 15(3):18-21.

Kazman, R., Brien, L. O., and Verhoef, C. (2003). Architec-
ture Reconstruction Guidelines, Third Edition. Techni-
cal Report November, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA.

Khadka, R., Saeidi, A., Idu, A., Hage, J., and Jansen, S.
(2013). Legacy to SOA Evolution: A Systematic Litera-
ture Review. In Ionita, A. D., Litoiu, M., and Lewis, G.,
editors, Migrating Legacy Applications: Challenges in
Service Oriented Architecture and Cloud Computing
Environments, chapter 3, pages 40-71. IGI Global.

Kienle, H. M. and Distante, D. (2014). Evolution of Web
Systems. In Mens, T., Serebrenik, A., and Cleve, A.,
editors, Evolving Software Systems, chapter 7, pages
201-228. Springer Berlin Heidelberg, 1 edition.

Krasteva, 1., Stavru, S., and Ilieva, S. (2013). Agile Model-
Driven Modernization to the Service Cloud. In Pro-
ceedings of The Eighth International Conference on In-

194

ternet and Web Applications and Services (ICIW 2013),
pages 1-9, Rome, Italy. Xpert Publishing Services.

Object Management Group (2011). Architecture-Driven
Modernization: Knowledge Discovery Meta-Model
(KDM).

Ping, Y. P. Y., Kontogiannis, K., and Lau, T. (2003). Trans-
forming legacy Web applications to the MVC archi-
tecture. Eleventh Annual International Workshop on
Software Technology and Engineering Practice.

Razavian, M. and Lago, P. (2010). A Frame of Reference for
SOA Migration. In Di Nitto, E. and Yahyapour, R., edi-
tors, Towards a Service-Based Internet, volume LNCS
6481, pages 150-162. Springer Berlin Heidelberg.

Rivero, J. M., Heil, S., Grigera, J., Robles Luna, E., and
Gaedke, M. (2014). An extensible, model-driven and
end-user centric approach for api building. In Caste-
leyn, S., Rossi, G., and Winckler, M., editors, Web En-
gineering, volume 8541 of Lecture Notes in Computer
Science, pages 494—497. Springer Berlin Heidelberg.

W3C WebAssembly Community Group (2015). Webassem-
bly design: Minmal viable product.

Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Or-
mandy, T., Okasaka, S., Narula, N., and Fullagar, N.
(2009). Native Client: A Sandbox for Portable, Un-
trusted x86 Native Code. In 2009 30th IEEE Sympo-
sium on Security and Privacy, pages 79-93. IEEE.

Zakai, A. (2011). Emscripten: an LLVM-to-JavaScript com-
piler. In Proceedings of the ACM international con-
ference companion on Object oriented programming

systems languages and applications companion, pages
301-312.



