

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 494–497, 2014.
© Springer International Publishing Switzerland 2014

An Extensible, Model-Driven and End-User Centric
Approach for API Building

José Matías Rivero1,2, Sebastian Heil3, Julián Grigera1, Esteban Robles Luna1,
and Martin Gaedke3

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{mrivero,julian.grigera,esteban.robles}@lifia.info.unlp.edu.ar

2 Also at Conicet
3 Department of Computer Science, Chemnitz University of Technology, Germany
{sebastian.heil,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. The implementation of APIs in new applications is becoming a man-
datory requirement due to the increasing use of cloud-based solutions, the ne-
cessity of integration with ubiquitous applications (like Facebook or Twitter)
and the need to facilitate multi-platform support from scratch in the develop-
ment. However, there is still no theoretically sound process for defining APIs
(starting from end-user requirements) or their productive development and
evolution, which represents a complex task. Moreover, high-level solutions in-
tended to boost productivity of API development (usually based on Model-
Driven Development methodologies) are often difficult to adapt to specific use
cases and requirements. In this paper we propose a methodology that allows
capturing requirements related to APIs using end-user-friendly artifacts. These
artifacts allow quickly generating a first running version of the API with a spe-
cific architecture, which facilitates introducing refinements in it through direct
coding, as is commonly accomplished in code-based Agile processes.

Keywords: API, Model-Driven Development, Agile Development, Prototyping.

1 Introduction

Over the last years, users and businesses have witnessed a trend to move applications
and services to the cloud. Several aspects motivate this trend, most importantly cost
and deployment time. In this context, developers must interact with applications and
services they do not directly control, so they need APIs to facilitate this interaction.
Since APIs generally centralize operations and business-logic among applications in
several platforms, they are inherently complex; however, most development processes
do not take this into account, particularly Agile methodologies, which do not provide
clear and structure method to cope with the complexity of API design [1]. To tackle
such complex requirements, we have introduced a Model-Driven Development
(MDD) [2] solution called MockAPI [1], which is limited to providing a prototypical
version of the API. In this paper we propose ELECTRA (standing for Extensible mod-
eLdriven Enduser CenTRic API), an hybrid Agile, MDD and coding approach that

 An Extensible, Model-Driven and End-User Centric Approach for API Building 495

(1) uses an end-user friendly language to define API-related requirements as in
MockAPI (annotated mockups), (2) allows to quickly define and generate a running
API for testing integration with other software artifacts, and (3) proposes an API run-
time that can be extended (hence the term Extensible) with custom code without
breaking the model’s abstraction. We chose mockups as our main requirement artifact
because of their positive results in agile approaches [3], and their valuable require-
ments communication capabilities [4]. Using mockup and annotations as an end-user
friendly language we intend to capture the complex API requirements and, at the
same, time, provide a framework for quick API generation and refining.

2 The ELECTRA Approach

The ELECTRA process, depicted in Figure 1, is an adaptation of Scrum [5], the most
widely used agile process in industry [6]. As in Scrum, every iteration in the
ELECTRA approach starts by selecting the User Stories to be tackled (Define Sprint
Backlog step). Then, ELECTRA mandatorily requires building mockups with essen-
tial end-user participation to concretize each of these stories (Mockup Construction
step). After all User Stories are associated to mockups, developers use an enhanced
version of the MockAPI tool [1] to tag the mockups with API-related annotations
(Mockup Tagging step in Figure 1). These annotations are based on a simple grammar
that makes them easy to understand by end-users. From the annotated mockups, an
API can be derived through a code generation process (API Generation step). At this
point, developers get a running usable API for integration testing with other software
artifacts (API testing step). The generated API is deployed to ELECTRA’s runtime
environment which allows developers to refine it through direct coding (API
Refining). The result of this process is the Final API for the current iteration (API
Increment step).

Fig. 1. The ELECTRA workflow

Any type of user interface mockup can be used with ELECTRA tooling. After
mockups have been imported, different kinds of annotations can be defined by the
engineers in presence and with collaboration of end-users. The three most important
annotations types are Data annotations, which allow defining object types or business
entities well-known by stakeholders, Constraint annotations, which enable the
definition of business rules and Action annotations, which describe the execution of
heterogeneous or complex tasks within the API. Besides its technical specifications

496 J.M. Rivero et al.

(understood by engineers), some annotations provide an end-user friendly structured
text mode to describe API requirements in natural language. While end-users require
engineers help to write annotations, this text mode eases their understanding.
ELECTRA tooling currently uses JavaScript as its default scripting language, but any
scripting language implementing the Java Scripting API can be used instead. In Fig-
ure 2 a Data and Action annotations are shown applied over an invoice management
application to specify the existence of an Invoice business object and how it must be
integrated with an external API.

Fig. 2. Annotations in its different modes: end-user friendly (upper) and developer (lower)

3 Architecture and Code Generation

The core of the ELECTRA tool implementation (the so-called ELECTRA API run-
time) defines and implements a RESTful API as a set of Endpoints, which are com-
posed by an HTTP method, a URL regular expression and a script. When a new
HTTP request is received by the runtime, it seeks for a matching Endpoint (with the
same HTTP method and a matching URL regular expression). If it finds one, it
executes its internal script. Endpoint scripts can access and invoke other Scripts,
use stored Resources (for instance, media content as images or video) or invoke
operations on Services, which are declared and customized by developers.

ELECTRA’s code generation process consists in the generation of a set of End-
points and Scripts, and the configuration of a default DB Service for storage purposes
analyzing the annotated mockups. After triggering a code generation, developers can
tune the API as much as needed just editing the required Scripts and Endpoints or
changing the DB Service used. Also, they can define new Resources, Services or
Endpoints manually. Scripts are generated respecting the Pipes and Filters pattern
(where every Filter is formed by a Script implementing a different concern – i.e., code
for a different annotation type –, thus facilitating and isolating changes in the API.

 An Extensible, Model-Driven and End-User Centric Approach for API Building 497

When triggering a code regeneration, edited Scripts (Filters) are not altered, thus
preserving changes incorporated through direct coding.

4 Related Work

Benefits of using mockups as a primary requirement artifact in the development
process have been reported through statistical studies [7]. Also, its benefits in the
context of Agile and MDD processes (even API generation) have been commented
[8]. In addition, in our previous work [8] we demonstrated that mockup and annota-
tions provide a modeling framework that results more efficient than manual modeling,
even considering conceptual models – which are very similar to the Data annotations
presented in this work. However, none of these works propose a Model-Driven ap-
proach that can be extended through direct coding even in the models, as ELECTRA
provides. Several MDD approaches specifically tackle RESTful APIs [9,10] (as
ELECTRA), but they not provide a clear and pattern-based codebase allowing the
quick introduction of detailed implementation as ELECTRA does.

References

[1] Rivero, J.M., Heil, S., Grigera, J., Gaedke, M., Rossi, G.: MockAPI: An Agile Approach
Supporting API-first Web Application Development. In: Daniel, F., Dolog, P., Li, Q.
(eds.) ICWE 2013. LNCS, vol. 7977, pp. 7–21. Springer, Heidelberg (2013)

[2] Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Generation.
Wiley-IEEE Computer Society (2008)

[3] Ferreira, J., Noble, J., Biddle, R.: Agile Development Iterations and UI Design. In: Agil.
2007 Conf., pp. 50–58. IEEE Computer Society, Washington, DC (2007)

[4] Mukasa, K.S., Kaindl, H.: An Integration of Requirements and User Interface Specifica-
tions. In: 6th IEEE Int. Requir. Eng. Conf., pp. 327–328. IEEE Computer Society,
Barcelona (2008)

[5] Sutherland, J., Schwaber, K.: The Scrum Papers: Nuts, Bolts, and Origins of an Agile
Process

[6] VersionOne Inc., State of Agile Survey (2011)
[7] Ricca, F., Scanniello, G., Torchiano, M., Reggio, G., Astesiano, E.: On the effectiveness

of screen mockups in requirements engineering. In: 2010 ACM-IEEE Int. Symp. Empir.
Softw. Eng. Meas. ACM Press, New York (2010)

[8] Rivero, J.M., Grigera, J., Rossi, G., Luna, E.R., Montero, F., Gaedke, M.: Mockup-Driven
Development: Providing agile support for Model-Driven Web Engineering. Inf. Softw.
Technol., 1–18 (2014)

[9] Pérez, S., Durao, F., Meliá, S., Dolog, P., Díaz, O.: RESTful, Resource-Oriented Archi-
tectures: A Model-Driven Approach, in: Web Inf. In: Chen, L., Triantafillou, P., Suel, T.
(eds.) WISE 2010. LNCS, vol. 6488, pp. 282–294. Springer, Heidelberg (2010)

[10] Valverde, F., Pastor, O.: Dealing with REST Services in Model-driven Web Engineering
Methods. In: V Jornadas Científico-Técnicas En Serv. Web y SOA, JSWEB (2009)

	An Extensible, Model-Driven and End-User Centric Approach for API Building
	1 Introduction
	2 The ELECTRA Approach
	3 Architecture and Code Generation
	4 Related Work
	References

