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Abstract. The Shape Expressions (ShEx) Language provides a powerful tool for 

describing and validating structures in RDF knowledge graphs. While Shape Ex-

pressions are primarily used for validation, they also describe graph structures, 

enabling knowledge graph exploration. However, existing ShEx engines focus 

on validation rather than data exploration. In this paper, we introduce 

ShEx2SPARQL, an approach to systematically translate shape expressions into 

corresponding CONSTRUCT, SELECT, or ASK SPARQL queries. This enables 

knowledge graph exploration based on already available ShEx schemas. Our ap-

proach imposes certain restrictions, notably the exclusion of recursive shape ref-

erences, as SPARQL lacks sufficient support for recursive expressions. To eval-

uate our approach, we selected 292 Wikidata Entity Schemas, translated them 

into corresponding SPARQL queries and executed them against the Wikidata 

SPARQL endpoint. The results confirm the feasibility of our approach, but also 

reveal performance issues when executing complex SPARQL queries resulting 

from complex shapes with a multitude of constraints. 

Keywords: Shape Expressions, ShEx, SPARQL, Knowledge Graph, Explora-

tion, Linked Data, Semantic Web. 

1 Introduction 

Knowledge graphs (KGs) have become a key technology for the structured organi-

zation and integration of information in a machine-readable format. KGs store 

knowledge as a collection of entities and their relationships using the Resource De-

scription Format (RDF) [1] data model. RDF data can be queried and manipulated using 

standardized query language SPARQL [2]. However, constructing effective queries re-

quires knowledge of the graph’s structure and its underlying ontologies to construct 

correct query patterns. This structure is typically described in ontologies such as the 

Web Ontology Language (OWL) [3]. If information about the structure of a KG is not 

available, it can be derived either by analyzing the ontologies used or by using explor-

atory queries, before being able to construct the desired query. 

The Shape Expressions Language (ShEx) [4] offers a schema language for formally 

describing and validating the structure of RDF data by defining “shapes”. Shapes define 
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expected properties of RDF nodes, including required predicates in a triple, permitted 

datatypes for a specified literal, cardinality constraints, or logical combinations of graph 

patterns. Although designed as a validation language, ShEx shapes encapsulate rich 

structural information offering a blueprint for SPARQL query patterns. 

We introduce ShEx2SPARQL, a novel approach leveraging ShEx schemas for KG 

exploration. ShEx provides rich, declarative descriptions of shapes which our approach 

repurposes to guide data discovery in KGs. ShEx2SPARQL translates Shape Expres-

sions into CONSTRUCT, SELECT, or ASK SPARQL queries. Our approach enables 

the easy retrieval and inspection of data in a KG that conforms to a respective shape, 

eliminating the need for extensive, manual query construction. Furthermore, it can be 

applied for other use cases, such as identifying incomplete or inconsistent data, or re-

vealing latent relationships among entities. However, not all graph structures describa-

ble with ShEx can be translated into SPARQL, leading to certain restrictions. We eval-

uated our approach using Wikidata's [5] knowledge base. Wikidata uses Entity Sche-

mas expressed using ShEx to validate graph structures. We selected 292 of these, trans-

lated them into queries which executed to demonstrate the feasibility of our approach. 

2 Related Work 

A template-based query generation approach is presented by Cocco et al. [6], using a 

training set of natural language questions with associated SPARQL queries to answer 

natural language questions. A tagger is used to identify entities and relations in a ques-

tion. Then, predefined query templates are selected based on similarity and presented 

iteratively to the user to select. Light-QAWizard [7] applies an RNN-based multi-label 

classification to map a natural language question to templates. These are then used for 

query generation, attempting to exclude irrelevant clauses to reduce query complexity. 

More recently, Taffa and Usbeck [8] presented a few-shot LLM-based approach using 

Vicuna-13B to retrieve similar question-query template pairs. However, queries are as-

sociated with question embeddings, which are also used for finding similar questions. 

Tools such as Sparklis [9] and the Wikidata Query Builder1 employ an interactive, 

visual approach to enable users to construct queries by providing a faceted view. Sim-

ilarly, the tools Protégé [10] and QueryVOWL [11] enable users to visualize and edit 

ontologies. Protégé allows users to execute SPARQL queries in its user interface but 

does not provide pre-defined templates. QueryVOWL allows SPARQL query construc-

tion, but is limited to SELECT queries. 

Linked Data Objects (LDO) [12] represents RDF data as JavaScript objects. Modi-

fications to objects can automatically be translated into SPARQL update queries. 

SELECT, ASK or CONSTRUCT queries are not supported. 

In contrast, ShEx2SPARQL translates formal constraints specified in a ShEx schema 

directly into executable SPARQL graph patterns. No intermediate steps – such as tem-

plate completion or mapping of entities and relations – are required. Further, by reusing 

schemas, ShEx2SPARQL provides an alternative approach to knowledge graph 

 
1  https://query.wikidata.org/querybuilder/ 
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exploration with SELECT, ASK or CONSTRUCT queries, without the need for train-

ing data or manual query construction. 

3 Mapping ShEx to SPARQL 

Shape expressions provide a formal schema language designed to validate RDF data by 

defining shapes, specifying expected node properties. These may include constraints 

on predicates, permitted datatypes, cardinality, and logical combinations of graph pat-

terns. There are three types of ShEx syntaxes. In the following, we use the terminology 

of the JSON-LD-based ShExJ grammar in ShEx version 2. Its building blocks include 

Schema, Shape Expression (shapeExpr), NodeConstraint and TripleConstraint. 

Below, we provide a shortened (indicated by “(…)”) excerpt of the ShExJ syntax [13]: 

Schema { start:shapeExpr? shapes:[ShapeDecl+]? (...) } 

ShapeDecl { id:shapeExprLabel shapeExpr:shapeExpr (...) } 

shapeExpr  =  ShapeOr | ShapeAnd | ShapeNot | NodeConstraint | Shape |  

ShapeExprRef ; 

ShapeOr  {  shapeExprs:[shapeExpr{2,}] } 

ShapeAnd  {  shapeExprs:[shapeExpr{2,}] } 

ShapeNot  {  shapeExpr:shapeExpr } 

Shape  { expression:tripleExpr? (...) } 

NodeConstraint  { id:shapeExprLabel? nodeKind:(...) datatype:IRIREF? (...) } 

tripleExpr  = EachOf | OneOf | TripleConstraint | tripleExprRef ; 

EachOf  { id:tripleExprLabel? expressions:[tripleExpr{2,}] (...) } 

OneOf  { id:tripleExprLabel? expressions:[tripleExpr{2,}] (...) } 

TripleConstraint { id:tripleExprLabel? predicate:IRIREF valueExpr:shapeExpr? (...)} 

Schema represents the main building block, optionally specifying a start shape and 

a collection of shape declarations. A shape declaration (ShapeDecl) consists of an iden-

tifier and a shape expression (shapeExpr), which in turn can take various forms: logical 

combinations of two or more shapes (ShapeOr and ShapeAnd), the negation of a shape 

(ShapeNot), define structural constraints in triple expressions (Shape), impose con-

straints on a subject or object of a triple (NodeConstraint), and reference another shape 

expression in the schema (ShapeExprRef). A shape element may contain a triple ex-

pression (tripleExpr), which can be logically combined (EachOf and OneOf), impose 

triple constraints (TripleConstraint), or reference a triple expression (tripleExprRef). 

The following challenges need to be addressed when mapping ShEx to SPARQL: 

Recursion: ShEx allows recursive references of shapes. This enables the definition 

of nested or hierarchical relationships at arbitrary depth. However, SPARQL does not 

provide the means to express constrained traversal. Consequently, recursive relation-

ships cannot be expressed in SPARQL and must either be omitted or simplified. 

Start Shape: In ShEx, the presence of a start shape is optional. Without a specified 

start shape, however, a definite entry point when translating the schema may not be 

determinable. Selecting a start shape at random may result in different queries depend-

ing on the selected shape, which we believe to be undesirable for exploration. Instead, 
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a “root shape” would need to be identified, i.e., a shape not referenced by any other 

shape. Further, a schema may contain isolated clusters of shapes. If a start shape is 

specified, this may not represent an issue, as other clusters will be disregarded in the 

generated queries. In the absence of a specified start shape, it would not be possible to 

identify a definitive root shape, as several options may be available, possibly resulting 

in differing queries. This can be solved by moving shape clusters into distinct schemas. 

Variable Naming: A shape describes the structure of a resource. Consequently, a 

resource represents the subject of the graph patterns generated to express the constraints 

of a shape. However, shape ids may contain characters that are not valid in SPARQL 

variable names. To avoid this, shape ids should not be used in the constructed query. 

Shape ids may be hashed to create SPARQL syntax compliant variable names. 

Cardinality Constraints: A triple expression may impose cardinality constraints, 

such as the minimum or maximum number of times a triple with a specified predicate 

may occur. Mapping such constraints requires a mechanism to count the occurrence of 

certain predicate-object pairs for a given subject. An approach to solving this is de-

scribed by Prud’hommeaux2, using a counter function generating a query block to count 

the matching predicate-object pairs. This block then aggregates using the function 

COUNT() combined with a GROUP BY clause. Cardinality constraints are then speci-

fied using the HAVING clause to enforce the count value to be within the specified 

minimum and maximum limits. Both GROUP BY and HAVING can be represented in 

the post-modifier of a block, explained in Section 4. 

Node Constraints: A Node Constraint imposes restrictions on a node and may spec-

ify its datatype, node kind or permitted values. These constraints can be mapped to 

corresponding SPARQL FILTER operations.  

Based on these background considerations and challenges in mapping ShEx schemas 

to SPARQL queries, we discuss the specifics of our approach Section 4. 

4 The ShEx2SPARQL Approach 

This section introduces ShEx2SPARQL and describes how it translates key ShEx 

schema elements into SPARQL query patterns to enable knowledge graph exploration. 

It supports SELECT, CONSTRUCT and ASK queries and imposes two restrictions on 

source schemas to ensure executable and valid queries: 1) A start shape with a provided 

id must be defined in the source schema. As stated in Section 3, several scenarios exist 

that hinder effective exploration if no start shape is given. For this reason, we consider 

the definition of a start shape to be mandatory. 2) schemas containing recursive shape 

references cannot be translated, as SPARQL lacks support for constrained traversal. 

ShEx2SPARQL begins by parsing a given schema, identifying its start shape. The 

structure of the query is then constructed by traversing the elements of the schema and 

converting any constraints into a hierarchical representation of blocks and statements. 

A block represents a grouping of statements and blocks nested within the current 

block. A block may include a “pre”- and “post”-modifier and a list of statements and 

 
2  https://www.w3.org/2013/ShEx/toSPARQL.html 
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sub-blocks. Pre- and post-modifiers specify optional or excluded graph patterns and 

group by variables with cardinality constraints. They also specify cardinality ranges. A 

statement corresponds to a triple pattern, filter, or VALUES condition. Sub-blocks 

handle nested shape expressions or patterns that are optional or need to be excluded. 

After processing the schema, its root block representing the outermost structure of 

the query is returned. Then, each schema element is processed using a corresponding 

“visit” function to map its contents to SPARQL constructs. These are described below: 

1) Schema 

The start shape specified in the schema is identified and visited using the visitShape 

function, returning a new block. This block element represents the root block, which 

will also be returned by the visitSchema function. 

2) Shape 

As a shape represents an entity, its expressions describe the expected structure of 

this entity. The shape id is used in the SPARQL translation process as the subject for 

the triple patterns generated from its expressions. We use hashed (MD5) shape ids to 

ensure SPARQL compliant variable names. Each shape’s shape expression is visited 

with the visitShapeExpr function. This function takes the hashed shape id as a parameter 

and recursively processes the shape's constraints. It returns a block with statements rep-

resenting the structure of the shape as SPARQL graph patterns. The visitShape function 

returns this block without any modifications. 

3) Shape Expression 

Each type of shape expression needs to be processed differently: 

Shape: A shape may contain a triple expression which is visited, returning a new block 

and statements. The new block is added as a sub-block to the current expression. New 

statements are then appended to the statements of the current triple expression. 

ShapeOr: A ShapeOr represents two or more shapes linked by logical OR. This is 

translated by iterating through each shape, visiting their shape expression. Each visit 

results in a new block and statements. For each new block, the pre-modifier “UNION” 

is set to translate the OR relation of the shapes to blocks of triple patterns. For the first 

block, the “UNION” pre-modifier is not set, as only the blocks from the second onward 

must be joined via "UNION". New blocks and statements are handled as described for 

Shape elements. Statements consisting of SPARQL FILTERs require special handling. 

Multiple FILTER statements must be merged by logical OR into a single FILTER. 

ShapeAnd: A ShapeAnd represents an AND relationship between two or more shapes. 

Similarly to ShapeOr, this relation is translated by iterating through each of the shapes, 

visiting each shape expression. New blocks and statements are processed as described 

for the Shape element. Unlike ShapeOr, FILTER constraints do not require any special 

handling, as an AND condition requires all FILTER constraints to apply. 

ShapeNot: A ShapeNot represents a negated shape expression. The shape expression 

is visited, creating a new block and statements. These are processed as described for 

the Shape element. However, the pre-modifier of the block is set to “MINUS” to force 

the exclusion of the specified constraints in SPARQL. 

NodeConstraint: A NodeConstraint specifies constraints for individual nodes. Node 

constraints are translated into statements as opposed to blocks. The created statements 

are appended directly to the list of statements of the current shape expression. 



6  C. Göpfert et al. 

ShapeExternal: A ShapeExternal represents a reference to a shape in an external 

schema. The referenced shape must be retrieved from the imported schema and is then 

processed according to the procedure described in 2) Shape. The resulting new block 

and statements are integrated as described for the Shape element. 

shapeExprRef: shapeExprRef is a reference to another shape within the current 

schema. The referenced shape is processed in the same way as an external shape, with 

the only difference being that the shape does not need to be looked up first. 

4) Triple Expression 

Each type of triple expression is processed differently. For the type TripleConstraint, 

the triple constraint is visited using the function visitTripleExpression, returning a new 

block and statements. A TripleExpression of type EachOf or OneOf contains multiple 

linked expressions. In these cases, a new block with statements is created to encapsulate 

the entire triple expression before iterating through each sub-expression using visitEx-

pression. In each visit, a new block and statements are returned. Each new block is 

added as sub-block to the block of the triple expression. Each EachOf triple expression 

needs to be linked by OR, the pre-modifiers of the corresponding blocks are set to 

“UNION”, as described for the ShapeOr element. Similarly to shapeExprRef, tripleEx-

prRef represents a reference to a triple expression within the schema. The referenced 

triple expression must be visited and subsequently processed as described in this sec-

tion. Finally, the block and statements of the triple expression are returned. 

5) Node Constraint 

A NodeConstraint may contain constraints on a triple’s subject or object. Object 

constraints also specify the triple’s predicate in a NodeConstraint. A randomized hash 

is used to refer to the object, as a schema may contain multiple node constraints on 

triples with the same subject and predicate, but differing objects. A constraint will either 

specify a datatype, values, or node kind, all of which can be translated to FILTER op-

erations as described in Section 3. The numericFacets can be translated with compari-

son operators, and by using the functions STRLEN() or SUBSTR(), etc. Finally, the 

visitNodeConstraint function returns the created statements. 

6) Triple Constraint 

Triple constraints define a triple’s predicate and may include a value expression with 

a shape expression. The triple’s subject is the variable of the shape associated with the 

triple constraint through a triple expression. The triple’s object is described by an op-

tional value expression. A new block and statements are created if either a value ex-

pression is specified, or the triple expression is optional or exclusive. ShEx2SPARQL 

creates a random variable for the constrained triple’s object, unless the shape expression 

is referencing a shape in the schema, where the referenced shape id’s hash is used in-

stead. If a triple constraint does include a value expression, the generated variable is 

passed to the visitShapeExpr function as subject, as its shape descriptions relate to the 

constrained triple’s object. The new blocks and statements returned are appended as 

sub-blocks to the priorly created block and triple constraint’s list of statements. 

Value expressions of type node constraint are visited, adding statements it returns to 

the list of statements. These must be moved as statements of the created block if the 

constraint is optional or excluding, as this block may contain an “OPTIONAL” or 

"MINUS" pre-modifier. Finally, the created block and statements are returned. 
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ShEx2SPARQL supports the query methods CONSTRUCT, SELECT and ASK. For 

CONSTRUCT queries, the graph patterns within the CONSTRUCT clause are popu-

lated with all unique statements, omitting FILTER and VALUES statements. Addition-

ally, ShEx2SPARQL provides the option to specify the URI of the start shape, essen-

tially querying a specific instance of the start shape. This is realized by replacing the 

variable name of the start shape by a provided URI. An ASK query can be constructed 

to verify whether a resource identified by a provided URI complies with the shape of 

the schema. Consequently, the provision of a URI is mandatory for ASK queries. For 

SELECT queries, no further modifications to the constructed query are necessary. 

5 Evaluation 

We created a proof-of-concept prototype of the ShEx2SPARQL approach, currently 

providing limited support for cardinality constraints. For parsing schemas, the tool re-

lies on shexjs/parser3. Source code is available via https://purl.org/shex2sparql/code. 

To assess feasibility, we obtained 422 Entity Schemas (ShEx schemas) from Wiki-

data. We removed schemas that were either 1) empty, 2) invalid or obviously incorrect, 

3) made use of schema imports, 4) lacked a start shape, or 5) included recursive shape 

references. The last three criteria are based on the previously mentioned limitations. 

The selection based on the above criteria was automated with a script to ensure the 

reproducibility of our evaluation, available via https://purl.org/shex2sparql/evalua-

tion. A total number of 292 schemas remained after filtering. 

For each schema, we generated a CONSTRUCT query and executed it against Wik-

idata’s SPARQL endpoint. 187 of 292 queries succeeded (HTTP 200), while 105 timed 

out. Re-executing them with “LIMIT 1” recovered 47 more results. We found no simple 

correlation between query complexity (number of triple patterns or FILTERs) and 

timeouts. Four highly complex queries (>164 graph patterns) all timed out, yet even 

some seemingly trivial queries (containing one graph pattern and a filter) did so too, 

suggesting endpoint load and queried data volume also play roles. We provide a digital 

appendix including a detailed list of executed queries and their results at 

https://purl.org/shex2sparql/data. Among the 234 successful queries, 56 returned no 

data (44 of the original 187, and 12 of the 47 limited). Investigation (cf. digital appen-

dix) showed two causes: 1) some shapes simply had no matching instances in Wikidata, 

and 2) several schemas contained errors such as invalid IRIs, deprecated or mistyped 

properties, misused value sets. Thus, the queries were incapable of retrieving data. 

6 Conclusion 

We presented ShEx2SPARQL, a novel approach leveraging the Shape Expressions 

Language (ShEx) for knowledge graph exploration. ShEx2SPARQL utilizes a given 

ShEx schema to systematically translate it into a corresponding SPARQL query. This 

enables users to explore knowledge graphs by re-utilizing available ShEx schemas. We 

 
3  https://www.npmjs.com/package/@shexjs/parser 

https://purl.org/shex2sparql/code
https://purl.org/shex2sparql/evaluation
https://purl.org/shex2sparql/evaluation
https://purl.org/shex2sparql/data
https://www.npmjs.com/package/@shexjs/parser
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evaluated our approach using real-world ShEx schemas from Wikidata and demon-

strated its feasibility by generating SPARQL queries that yielded data conforming to 

the shapes specified in the schemas. However, we also found limitations, as a subset of 

queries resulted in timeouts—an issue largely attributable to external endpoint perfor-

mance and inherent query complexity. Future work will focus on extending the capa-

bilities of ShEx2SPARQL by supporting schema imports and optimizing generated 

SPARQL queries to better handle complex constraints and to mitigate timeout issues. 
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