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Abstract. Knowledge graphs have gained popularity in many areas as a means 

of representing knowledge in a structured format. A large number of approaches 

for knowledge graph construction have been developed based on unstructured, 

semi-structured, or structured data sources. Many approaches focus on narrowly 

defined application areas or specific data source formats. In this paper, we de-

scribe a systematic method for knowledge graph construction from sources with 

heterogeneous data formats. The method comprises steps from ontology devel-

opment to data acquisition and integration, mapping, and data refinement as well 

as the evolution of the constructed knowledge graph. We evaluate our approach 

using the case study of TUCgraph, a knowledge graph covering entities from the 

academic environment. This knowledge graph is actively being used within a re-

search information system, demonstrating the practical applicability and effec-

tiveness of our method. 
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1 Introduction 

Knowledge graphs (KG) are a powerful tool to represent knowledge in a structured 

manner. As such, KGs have been increasingly adopted across various areas [1–3]. A 

common challenge in KG construction (KGC) is the integration of heterogeneous data 

from distributed sources. Integration of these data into a uniform structure plays a vital 

role in comprehensive data analysis, knowledge discovery, and decision-making [1]. 

The integration of heterogeneous data poses several challenges: diversity in data for-

mats, structures, and multiplicity of sources complicate data extraction, cleaning, and 

harmonization processes [4]. Failure to address these may result in incorrect represen-

tations in the KG. Therefore, there is a strong need for a robust, systematic approach to 

overcoming these challenges. While the need to update a KG when source data changes 

is considered by some KGC approaches, it is often limited to KG maintenance and one-

directional updates [4], disregarding that changes may have occurred in the KG itself.  

In this paper, we propose a six-step method for integrating heterogeneous data into 

a KG. We go beyond the sole consideration of maintenance aspects and address the 
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evolution of data source(s) as well as the KG. In our case study, we demonstrate how 

the method was applied to construct a KG, which currently serves as the primary data 

source for a research information system. 

2 Related Work 

The development of ontologies, which provide the basis for KGs, is usually strongly 

dependent on the knowledge domain and format of the data source(s). Al-Zaidy and 

Giles [5] present a KGC approach to automatically extract entities and relations from 

scientific documents. Yet et al. [6] provide a survey that distinguishes generative KGC 

approaches, most of which assume unstructured text as source data. Kommineni et al. 

[7] illustrate an approach leveraging LLMs to support KGC tasks. However, a down-

side of automated approaches is that incorrect data may be generated, necessitating a 

subsequent review and refinement step. In addition, approaches to systematize KGC 

have been proposed. Asprino et al. [8] suggest an approach to transform heterogeneous 

data directly into the Resource Description Framework (RDF). However, their ap-

proach requires connectors dedicated to every source format. Tamašauskaitė and Groth 

[4] provide a literature review on KGC and propose a systematic six-step approach. 

We present a systematic method that can be used to generate a KG from unstruc-

tured, semi-structured, or structured data sources. The method pays particular attention 

to the evolution of the KG and its data sources, an aspect that previous methods either 

neglected or only considered to a limited extent. 

3 Method Description 

Our method includes the steps: 1) ontology development, 2) data acquisition, 3) extrac-

tion and integration, 4) mapping, 5) refinement, and 6) update and evolution, which are 

based on previous methods such as [4]. However, we consider the ontology underlying 

the KG as a fundamental basis which should be in place in the data acquisition step. 

We also emphasize that a KG may be subject to change, i.e. evolving. Consequently, 

we extend the final step, which in previous approaches commonly involves only 

maintenance tasks, to account for the evolution of data source(s) and the KG itself. 

3.1 Ontology Development 

First, the underlying ontology of the KG must be developed. Entities and their relation-

ships need to be described. This typically involves steps such as requirements specifi-

cation, ontology design, construction, and evaluation [9]. For all identified entities, at-

tributes and relations that are relevant to the selected domain or use case need to be 

identified. Next, the ontology can be modeled, manually or using an ontology editor. 

Based on the given entities, attributes and relationships, classes and properties are de-

rived. Before defining new classes and properties, it should be checked if existing on-

tologies describe them and can be reused. Before defining new classes and properties, 
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it should be checked if suitable ontologies exist that can be reused. Reusing ontologies 

reduces development effort and may enhance interoperability with established stand-

ards [8]. Once the ontology has been constructed, it should be evaluated based on the 

initially defined competency questions (cf. [9]). In addition, its quality should be eval-

uated. Should the evaluation yield unsatisfactory results, then the ontology should be 

improved, and the evaluation repeated, until a satisfactory result is achieved. 

3.2 Data Acquisition 

Data acquisition involves the identification and retrieval of data from one or multiple 

data sources. First, relevant data sources must be identified. Common techniques to 

obtain data include the utilization of APIs, which facilitate programmatic access to data 

provided by many online services and databases. To extract data from web pages, a 

popular method is web scraping. Another common data source is data dumps, which 

usually provide data in semi-structured formats, providing a convenient way to acquire 

a large amount of data at once. Once data sources have been identified and the data 

acquisition methods have been determined, the necessary infrastructure to collect and 

store data can be setup. Depending on the data volume and update frequency, this may 

include data pipelines, storage systems, and processing frameworks [10]. 

3.3 Extraction and Integration 

Next, the acquired, raw data is converted into a structured format for integration. This 

step aims to ensure that the data is cleaned and curated, to enable an accurate mapping 

to the ontology in the next step. Extraction begins with identifying and isolating rele-

vant entities, attributes, and relationships from the acquired data. Rule-based, diction-

ary-based, template-based approaches [11] may be used to automate this process fully 

or partially. In addition to entities, their describing attributes must also be extracted, as 

well as relations between entities. For this purpose, pattern-based or deep learning-

based relation extraction approaches [12] can be utilized. The suitability of tools and 

techniques for extraction depends heavily on the format of the source data. 

Once data is extracted, it needs to be cleaned. Data cleaning involves the correction or 

removal of incorrect, duplicate or incomplete data. This aims to recognize inconsisten-

cies and errors in the data and, ideally, to correct them to improve data quality.  

This is followed by data integration, in which data from multiple sources is harmo-

nized and merged to create a unified data set. This may involve several challenges: 

different data sources may use different identifiers for one and the same entity, requir-

ing a reconciliation of these identifiers to ensure consistency. In case of multiple data 

sources providing conflicting information about an entity, a conflict resolution strategy 

needs to be established. Finally, the result of this step is a unified dataset. 

3.4 Mapping 

The unified data must be aligned with the structure defined by the ontology. Entities 

must be assigned to appropriate classes; attributes, and relationships to corresponding 
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data and object properties. For data type properties with a restricted value range, value 

type conversion is needed to ensure data integrity and consistency. This can be realized 

using the two-stage mapping process proposed by Asprino et al. [8]. First, mappings 

are defined to adhere to the structure of the ontology. Then, the mappings are processed 

to generate RDF. This is repeated – editing mappings and evaluating the generated RDF 

data against the input data to identify errors – until a satisfactory result is achieved. 

3.5 Refinement 

Refinement involves evaluating the accuracy, consistency, completeness and adherence 

to defined constraints, i.e. on data types, cardinality, properties, or further constraints 

set through additional rules, e.g. using SHACL [13]. In addition, a reasoning engine 

should be used to infer based on the rules defined in the ontology. Doing so may enrich 

the data by inference [12] and identify any violated constraints. For further approaches 

to KG refinement, we refer to the survey of Paulheim [14]. 

3.6 Update and Evolution 

Changes in source data should be reflected in the KG to keep it up to date. This may be 

realized by subscribing to data update events (active update techniques), or by periodi-

cally checking each data source for changes [15]. Active updates are not always realiz-

able, as it requires an event feed of recent changes. In such cases, an update frequency 

predictor can be employed [16]. To distinguish older from new data and to ensure only 

the latest information is used, a versioning system can be employed [4]. More complex 

situations may require merging changes from multiple sources, analogous as described 

in section 3.3. If the KG itself is subject to being modified, the update process becomes 

yet more complex, as data co-evolution (term as defined by Faisal et al. [17]) must be 

taken into account to integrate the updates to the data source(s) and the KG seamlessly. 

Synchronization processes may also lead to errors, e.g. data inconsistencies, failed 

data updates, or incorrect merges. Therefore, the automation of synchronization with 

data sources requires careful monitoring and validation to detect errors. Automated pro-

cesses must be able to handle situations where changes occur to a data source's schema 

that might disrupt data extraction and integration pipelines. Regular validation and 

plausibility checks may contribute to the early detection of such changes so that adjust-

ments can be made to the extraction and mapping processes. Furthermore, over time it 

may be necessary to modify the ontology, refining or extending the ontology. This may 

require the migration of existing data in the KG to meet the requirements of the updated 

ontology. Consequently, assumptions made in the previous steps of extraction, pro-

cessing, mapping, and validation steps may need to be reconsidered as well. 

4 Case Study: TUCgraph 

We applied the proposed method to construct TUCgraph, a KG currently used by the 

research information system (RIS) of Chemnitz University of Technology as the 
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primary data source. At present (July 2024), TUCgraph contains 1,050,821 triples, ag-

gregating and aligning data from multiple data sources. It entails entities such as uni-

versity staff, organizational units, research projects, lab devices, events, and facilities. 

Ontology Development TUCgraph is employed by a RIS based on the open-

source platform VIVO [18]. As VIVO requires a predefined set of ontologies, these 

were (re-)used as the basis of TUCgraph to satisfy the requirement. 

Data Acquisition The selected data sources include both internal university data 

sources and external API endpoints and websites. Whenever available, API endpoints 

were utilized. People and project data were enriched with data from external databases 

and websites of funding organizations. Data was partially obtained via web scraping 

due to the lack of a public API. 

Extraction and Integration For each source format, a Python script was developed 

to acquire, validate and integrate data into an aligned structure. To disambiguate entities 

referred to by differing names, we used the entity linking approach of Zhao et al. [11]. 

The remaining ambiguities were addressed through manual review, however, some re-

mained unresolvable due to missing contextual information. 

Mapping The mapping step involved translating the aligned data onto the KG. In 

the case of TUCgraph, the target model is RDF. In this regard, entities and properties 

were mapped. Entities were mapped to their corresponding classes in the ontology and 

attributes and relations were mapped to their corresponding properties. We constructed 

SPARQL INSERT queries to insert the data directly into the KG.  

Refinement We used a reasoner to find inconsistencies and datatype violations in 

the KG. The reasoner enriched the KG by inferring additional types of individuals, 

based on the rules of the ontology. In case of type violations, we either manually cor-

rected the value, or, in case of uncorrectable, faulty data, removed it. 

Update and Evolution We use a Python script for periodic updates of the KG. The 

script automates data acquisition, extraction, processing and integration, and mapping 

to generate SPARQL queries. As the KG is used by a RIS and can be modified by RIS 

users, a conflict resolution strategy is in place to prevent source data overwriting more 

recent user input. So far, a complex merge strategy was not needed in our case. 

Despite its successful application, our method has limitations. The quality of source 

data in particular impacts the required effort, especially in step three where corrective 

measures are performed. Furthermore, in some cases, missing data could not be reliably 

inferred. This made data mapping impossible, effectively leading to data loss. 

5 Conclusion 

In this paper, we present a novel approach that considers KGC as a continuous process, 

addressing challenges from the co-evolution of source data and the KG, that were pre-

viously unaddressed. Our method fills this gap and offers guidance to KG engineers, 

contributing a practical solution for integrating multiple sources in heterogeneous for-

mats into a unified KG. We demonstrate our method’s applicability through TUCgraph, 

a KG developed in an academic setting. TUCgraph integrates a wide range of entities 
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related to university operations. TUCgraph serves as the primary data source for a re-

search information system, highlighting its utility. 
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